Оптико электронный способ сканирования. Сканирующие оптико - электронные съёмочные системы (сканеры)

Фотограмметрия – (photos-свет, gramma-запись, metreo-измерения) научная дисциплина, связанная с определением геометрических параметров (формы размеры пространственного положения и других св-в объектов по их изображению)

Дистанционное зондирование – получение информации об объекте по данным измерений сделанных на расстоянии от объекта, т.е без прямого контакта с ним.

Достоинство данных дистанционного зондирования:

    Цифровой вид информации

    Объективность и достоверность

    Обзорность

    Оперативность

    Регулярность и периодичность поступления информации

    Разнообразие по разрешению и видам съемки

    Возможность исследования медленно протекающих и скоротечных процессов

Недостатки данных дистанционного зондирования:

    Наличие геометрических, радиометрических и прочих искажений

    Перенасыщенность информации

    Наличие белых пятен

Методы ДЗ:

    Пассивный

Съемочная система фиксирует либо отраженную объектом солнечную энергию, либо собственное излучение объекта

    Активный

Съемочная система испускает сигнал собственного источника энергии, а затем фиксирует его отраженную объектом часть

Съемочные системы

Классификация съемочных систем:

В зависимости от приемника различают:

    Фотографическое изображение

Изображение формируется оптическим способом на фотопленке, а видимое изображение получается после фотохимической обработки (проявка и печать)

    Цифровое изображение

Приемником излучения яв-ся матрицы или линейки ПЗС (приборы с зарядовой связью)

По методу получения изображения:

    Пассивные

    1. Фотографические

      Оптико – механические сканерные системы

      Оптико – электронные сканерные системы

    Активные

    1. Радиолокационные съемочные системы

      Лазерные сканерные съемочные системы

Фотографические съемочные системы

В фотографической СС снимок формируется практически мгновенно, по законам центральной проекции.

Классификация фотоапапаратов:

    Одно-объективные

    Много-объективные

    Панорамные

По величине угла зрения:

    Узкоугольные (τ < 50°)

    Нормальны (50° < τ < 90°)

    Широкоугольные (90° < τ < 110°)

    Сверх широкоугольные (τ > 110°)

По величине фоккусного расстояния:

    Коротко-фокусные (f < 100 мм)

    Нормальные (100 мм < f < 300мм)

    Длиннофокусные (f > 300 мм)

Оптико – механические сканерные системы

Оптико – механические сканер – содержит только 1 технический элемент (датчик), который позволяет измерять яркость небольшого участка (пикселя) земной поверхности

Вращающееся зеркало просматривает полосу местности, что позволяет зарегистрировать яркость целого ряда пикселей земной поверхности за короткий промежуток времени, т.е сформировать строку изображения.

Следующая строка изображения формируется за счет движения носителя.

Если единственный датчик заменить линейкой, можно получить многоканальное изображение.

Тепловую составляющую излучения можно получить при помощи полу прозрачного зеркала.


Оптико – электронные сканерные системы

Изображение построенное при помощи оптико – электронных сканеров проектируется на линейное, либо матричное множество ПЗС.

Радио локационные сканерные системы

Взаимный импульс от передатчика установленного на носителе излучается направленной антенной формирующий веерообразный луч в вертикальной плоскости.

Часть отраженной энергии регистрируется приемником, установленном там же, где и передатчик. В результате образуются сигналы, которые управляют яркостью светового пятна электронно-лучевой трубки. Совокупность таких пятен образует строку радио-локационного изображения, а время прохождение сигнала определяет расстояние до объекта.

Диапазоны длин волны:

    Х полоса (𝜆=2,4 – 3,8 см)

    С полоса (𝜆=3,8 – 7,5 см)

    L полоса (𝜆=15 – 30 см)

Лазерные съемочные системы

Лазер – усиление света по средством вынужденного излучения, т.е это устройство преобразующее энергию накачки в энергию монохроматического и узко направленного потока излучений.

Одиночные снимки

Е – предметная плоскость (плоскость местности) - Горизонтальная плоскость, проходящая через какую-либо точку местности

S – точка фотографирования (центр проекции)

n – Плоскость наилучшего изображения

So - главный луч

f фокусное расстояние – расстояние от S до o′

p – плоскости снимка

o – главная тоска снимка

a , b – малое изображение точек A и B

O – Точка на местности соответствующая главной точке

Связка лучей – совокупность всех проектирующих лучей

Главный луч - Луч совпадающий с оптической осью камеры

Н ф – высота фотографирования – расстояния от точки фотографирования S до предметной плоскости Е.

основная формула определения масштаба

n точка надира – точка пересечения отвесной линии проведенной через точку фотографирования и отвесной линией

N – точка на местности соответствующая точке надира

α° - суммарный угол наклона снимка

с – точка нулевых искажений – точка пересечения биссектрисы угла наклона снимка и плоскости снимка

С – точка на местности соответствующая точке нулевых искажений

Tt линия основания – линия пересечения плоскости Е и плоскости p

Q плоскость главного вертикала –вертикальная плоскость проходящая через главный луч

Vv главная вертикаль – линия пересечения плоскости главного вертикала и плоскости снимка

VV линия направления съемки – линия пересечения предметной плоскости и плоскости главного вертикала (Q и Е)

Е′ - плоскость действительного горизонта - горизонтальная плоскость, проведенная через точку фотографирования

ii линия действительного горизонта – линия пересечения плоскости действительного горизонта и плоскости p.

I главная точка схода – точка пересечения действительного горизонта и главной вертикали VV

qq главная горизонталь – прямая в плоскости снимка проведенная через главную точку перпендикулярная главной вертикали

h c h c линия нулевых искажений – прямая в плоскости снимка проходящая через точку нулевых искажений параллельно главной горизонтали qq.

Не уступающего по своей эффективности серьёзным промышленным аналогам. Теперь перейдём к самой схеме прибора, основа которой выполнена на микроконтроллере AT89C52.

Пояснения к схеме:

  • - JP1 - DMX.
  • - JP2 - переключатель DMX/под музыку.
  • - JP3 - микрофон (с соблюдением полярности).
  • - JP4 - переменный резистор 50-100 кОм, регулятор чувствительности микрофона.
  • - JP5 - питание. Я использовал ~10 В, чтобы на движки шло +14 В
  • - JP6, JP7 - подключение оптических датчиков нулевого положения кругов гобо и цвета. В кругах делается прорезь, по которой и останавливается круг.

JP8 - управление приводом стробо. У меня этот выход идет на транзистор, который через оптопару и симистор управляет гашением лампы. То есть сигнала нет - лампа не горит, сигнал есть - лампа горит). Вот схема управления:

Симистор управляет электронным блоком питания. Он был на 12 В 200 Вт.

Переделал его на 15 В и применил лампу с отражателем от медицинских приборов 15 В 150 Вт. Последовательно с лампой стоит термистор (NTC1), чтобы лампа плавно загоралась и не сгорела. В режиме от музыки этот узел не работает и лампа постоянно включена. Эта плата закреплена на кусочке текстолита и прикручена прямо под лампой:

  • - JP9 - управление оптической призмой. Ставится движок, который при сигнале на этом выходе крутится и вращает оптическую призму, которая раздваивает или расстраивает изображение).
  • - JP10 - JP11 - подключение шаговых двигателей - 2 управление зеркалом, круг гобо и круг цвета.
  • - JP12, JP13 - разъем для внутрисхемного программирования.

Прошивку для МК и исходники можно . Другие файлы - на форуме. Фотографии платы светового сканера на микроконтроллере AT89C52:

Круги гобо и цвета останавливаются по оптическому датчику. Круг крутится в прорези оптодатчика. когда через оптодатчик проходит прорезь в круге, то он останавливается. Двигатели положения зеркала после включения отклоняют его в крайнее положение, бьются об упор и останавливаются. Потом поворачиваются на определенный угол в противоположное направление - это и есть среднее положение зеркала.

Круг гобо купил без дихроичных фильтров. Однако применить готовые не смог, так как угол поворота не сходился. Поэтому сделал из тонкого алюминия круги под мой диаметр и мой угол поворота. Просверлил отверстия нужного диаметра (чуть больше, чем купленные гобо).

Матрица является важнейшей частью любого сканера. Матрица трансформирует изменения цвета и яркости принимаемого светового потока в аналоговые электрические сигналы, которые будут понятны лишь единственному ее электронному другу – аналого-цифровому преобразователю (АЦП). С этой точки зрения, АЦП можно сравнить с гидом-переводчиком, неизменным ее компаньоном. Только он как никто другой понимает матрицу, ведь никакие процессоры или контроллеры не разберут ее аналоговые сигналы без предварительного толкования преобразователем. Только он способен обеспечить работой всех своих цифровых коллег, воспринимающих лишь один язык – язык нулей и единиц.

Световой поток, падая на поверхность матрицы, буквально "вышибает" электроны из ее чувствительных ячеек. И чем ярче свет, тем больше электронов окажется в накопителях матрицы, тем больше будет их сила, когда они непрерывным потоком ринутся к выходу. Однако сила тока электронов настолько несоизмеримо мала, что вряд ли их "услышит" даже самый чувствительный АЦП.

Именно поэтому на выходе из матрицы их ждет усилитель, который сравним с огромным рупором, превращающим, образно говоря, даже комариный писк в вой громогласной сирены. Усиленный сигнал (пока еще аналоговый) "взвесит" преобразователь, и присвоит каждому электрону цифровое значение, согласно его силе тока.

Большинство современных сканеров для дома и офиса базируются на матрицах двух типов: на CCD (Charge Coupled Device) или на CIS (Contact Image Sensor). Корпус CIS-сканера плоский, в сравнении с аналогичным CCD-аппаратом (его высота обычно составляет порядка 40-50 мм).

CCD-сканер обладает большей глубиной резкости, нежели его CIS-собрат. Достигается это за счет применения в его конструкции объектива и системы зеркал.

На рисунке, для простоты восприятия, нарисовано лишь одно зеркало, тогда как у типового сканера их не менее трех-четырех

Сканеры с CCD-матрицей распространены гораздо больше, чем CIS-аппараты. Объяснить это можно тем, что сканеры в большинстве случаев приобретаются не только для оцифровки листовых текстовых документов, но и для сканирования фотографий и цветных изображений. Погрешность разброса уровней цветовых оттенков, различаемых стандартными CCD-сканерами составляет порядка ±20%, тогда как у CIS-аппаратов эта погрешность составляет уже ±40%.

CIS-матрица состоит из светодиодной линейки, которая освещает поверхность сканируемого оригинала, самофокусирующихся микролинз и непосредственно самих сенсоров. Конструкция матрицы очень компактна, таким образом, сканер, в котором используется контактный сенсор, всегда будет намного тоньше своего CCD-собрата. К тому же, такие аппараты славятся низким энергопотреблением; они практически нечувствительны к механическим воздействиям. Однако CIS-сканеры несколько ограничены в применении: аппараты, как правило, не приспособлены к работе со слайд-модулями и автоподатчиками документов.

Из-за особенностей технологии CIS-матрица обладает сравнительно небольшой глубиной резкости. Для сравнения, у CCD-сканеров глубина резкости составляет ±30 мм, у CIS – ±3 мм. Другими словами, положив на планшет такого сканера толстую книгу, получишь скан с размытой полосой посередине, т.е. в том месте, где оригинал не соприкасается со стеклом.

У CCD-аппарата вся картина будет резкой, поскольку в его конструкции есть система зеркал и фокусирующая линза. В свою очередь, именно достаточно громоздкая оптическая система и не позволяет CCD-сканеру достичь столь же компактных размеров, как у CIS-собрата.

В плане разрешающей способности CIS-сканеры также не конкурент CCD. Уже сейчас некоторые модели CCD-сканеров для дома и офиса обладают оптическим разрешением порядка 3200 dpi, тогда как у CIS-аппаратов оптическое разрешение ограничено пока что 1200 dpi.

Сканеры с CIS-матрицей нашли свое применение там, где требуется оцифровывать не книги, а листовые оригиналы. Тот факт, что эти сканеры целиком получают питание по шине USB и не нуждаются в дополнительном источнике питания, пришелся как нельзя кстати владельцам портативных компьютеров.

CCD-матрица представляется "большой микросхемой" со стеклянным окошком. Именно сюда и фокусируется отраженный от оригинала свет. Матрица не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета, до его конца. Замечу, что общая дистанция движения лафета по направлению "Y" называется частотой сэмплирования или механическим разрешением сканера (об этом мы поговорим чуть позже). За один шаг матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, лафет сканирующего блока перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии, и т.д.

Самый важный элемент сканера – CCD-матрица

Вид сбоку на CCD-матрицу

На виде сбоку можно заметить два обычных винта, которые выполняют "деликатную" роль". С их помощью на этапе сборки сканера производилась точная юстировка матрицы (обратите также внимание на П-образные прорези в печатной плате на виде сверху), чтобы падающий на нее отраженный свет от зеркал ложился бы равномерно по всей ее поверхности. Кстати, в случае перекоса одного из элементов оптической системы воссозданное компьютером изображение окажется "полосатым".

На увеличенной фотографии CCD-матрицы достаточно хорошо видно, что CCD-матрица оснащена собственным RGB-фильтром. Именно он и представляет собой главный элемент системы разделения цветов, о чем многие говорят, но мало кто представляет, как на самом деле это работает. Обычно, многие обозреватели ограничиваются стандартной формулировкой: "стандартный планшетный сканер использует источник света, систему разделения цветов и прибор с зарядовой связью (CCD) для сбора оптической информации о сканируемом объекте". На самом деле, свет можно разделить на его цветовые составляющие, а затем сфокусировать на фильтрах матрицы. Столь же немаловажным элементом системы разделения цветов является объектив сканера.

Корпус

Корпус сканера должен обладать достаточной жесткостью, чтобы исключить возможные перекосы конструкции. Безусловно, лучше всего, если основа сканера представляет собой металлическое шасси. Однако корпуса большинства выпускаемых сегодня сканеров для дома и офиса, в целях снижения стоимости, полностью сделаны из пластмассы. В этом случае, необходимую прочность конструкции придают ребра жесткости, которые можно сравнить с нервюрами и лонжеронами самолета.

Оптическая система сканера не терпит пыли, поэтому корпус аппарата должен быть герметичным, без каких-либо щелей (даже технологических).

Края планшета должны иметь пологий спуск – это облегчает задачу по быстрому извлечению оригинала со стекла. Кроме того, между стеклом и планшетом не должно быть никакого зазора, который препятствовал бы извлечению оригинала.

Блок управления

Все сканеры управляются с персонального компьютера, к которому они подключены, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы. По этой причине, сканерам для дома и офиса совсем не обязательно иметь собственный блок управления. Однако многие производители идут навстречу самым неподготовленным пользователям, и устанавливают (обычно на лицевую панель) несколько кнопок "быстрого сканирования".

Кнопки быстрого сканирования – элемент, без
которого можно обойтись

15.4-16+isp_pages.doc


  1. Термоэлектрическое охлаждение

I


Пр-к I
Термоэлектрический эффект Пелтье состоит в поглощении или выделении тепла на спае двух различных металлов или полупроводников, когда по этим проводникам протекает электрический ток. Если Е 1 и Е 2 термоэдс первого и второго спаев, то количество тепла, получаемого на спае при температуре Т(К) выражается формулой: Q=(Е 1 - Е 2)xTxI.

Q

Один каскад конструкции на основе Bi 2 Te 3 позволяет получить температуру

(-30)С, два каскада (-75), шесть (-100)


  1. ^ Сканирующие системы

Для преобразования многомерного оптического сигнала в одномерный электрический, адекватную информацию о распределении параметров оптического сигнала, в ОЭП используется сканирование – процесс последовательной, непрерывной или дискретной, выборки значений оптического сигнала. Наиболее часто в ОЭП выполняется преобразование пространственного распределения потока излучения в видеосигнал. Поэтому процесс сканирования в этом случае есть последовательный просмотр сравнительно большого поля обзора малым мгновенным полем.

Важной функцией сканирования является повышение помехозащищенности ОЭП. Действительно, применение малого мгновенного поля зрения при обзоре большого пространства, содержащего малоразмерный объект на фоне помех, безусловно более предпочтительно, чем выполнение той же операции прибором с большим полем зрения.

Сканирующие системы могут быть классифицированы различным образом:


  • по способу разложения поля обзора (одноэлементное, параллельное, последовательное, комбинирование).

  • по физической сущности явлений, лежащих в основе работы сканирующей системы (механические, оптико-механические, фотоэлектронные, ультразвуковые и т.д.)

  • по пространственному признаку (одномерные, двумерные).
При одноэлементном сканировании малое мгновенное поле зрения может быть просмотрено, как показано ниже на рисунке, по самым различным траекториям.

При параллельном сканировании все поле OYLX просматривается одновременно по горизонтальным строкам, например, путем перемещения линейки ФП, ориентированной перпендикулярно направлению сканирования.

При последовательном сканировании линейка ФП ориентирована параллельно направлению сканирования каждую точку пространства просматривают все элементы. Сигналы от них поступают на линию задержки и в сумматор. В этом случае возможно не только осреднение сигнала, но и получение большого разрешения в (n) раз при усложнении электронной схемы и повышении стоимости ОЭП, которые могут быть несопоставимы с достижимым преимуществом.

При параллельно-последовательном сканировании просмотр поля зрения обеспечивается матрицей.


  1. Траектории сканирования при регулярном поиске

В оптико-электронных приборах используются различные траектории сканирования. Вид конкретной траектории определяет прежде всего форму контролируемой области поля обзора (форму растра).

Круглая форма поля образуется осесимметричными траекториями, которые создаются за счет двух составляющих сканирования. Одной из них является вращательное движение с постоянной скоростью, второй – как вращательные, так и колебательные движения.

Прямоугольная форма поля создается двумя колебательными перемещениями, хотя в некоторых случаях используются сочетания вращательного и поступательного движения.

Осесимметрические траектории сканирования могут быть разделены на ряд классов в зависимости от типа слагающих движений и соотношения между их скоростями. При этом различают спиральную и розеточную траектории сканирования.

Траектории сканирования при колебательно-вращательном движении сканирующего поля.

Архимедова спираль образуется, когда за время одного колебания вдоль некоторой оси ОУ последняя совершает несколько оборотов вокруг неподвижной точки О (рис.45).


А-шаг спирали.

Для осмотра поля обзора без (2r) пропусков размер мгновенного поля зрения должен быть равен (а).

Если при колебательно-вращательном движении сканирующего поля за время одного оборота совершается несколько колебаний, то создается розеточная траектория (рис.46, 47,48)





y y

Розеточная траектория характеризуется числом лепестков N, которое определяется угловой скоростью вращения , линейной скоростью и амплитудоколебания r

,

где

В зависимости от соотношения между r, радиусом поля обзора R, а также направления и начала сканирующего колебания изменяется характер заполнения поля линиями сканирования изменяется.

Траектории сканирования при вращательно-вращательном движении достаточно наглядно представлены на рис. 49-51.

Траектории сканировании при колебательных перемещениях.

Колебательные перемещения сканирующего поля в двух взаимно перпендикулярных направлениях позволяют осуществить так называемую построчную и прогрессивную траекторию сканирования. В этом случае в процессе развертки сканирующее поле (СП) перемещается слева направо и одновременно смещается на ширину строки вниз. Пройдя одну строку, СП быстро перемещается влево и затем процесс повторяется до заполнения кадра –поля обзора. Для получения равномерного движения СП вдоль строки или кадра перемещения его в исходное положение необходимо обеспечить пилообразный закон движения (рис.52). В заключении приведём рис.53, который иллюстрирует некоторые специальные траектории сканирования.


  1. Типы сканирующих устройств

Обычно различают ОЭП с фотоэлектронным сканированием, сканирование электронным лучом, сканирование световым лучом, оптико-механическое сканирование.

Сканирование электронным лучом (СЭЛ)

СЭЛ осуществляется в телевизионных передающих трубках (иконоскоп, супериконоскоп, ортикон, диссектор, видикон и др.).

Большинство современных передающих трубок являются фотоэлектрическими приемниками излучения с внешним фотоэффектом,обладающим достаточной чувствительностью в области длин волн до ~1,2 мкм.

В ряде случаев в качестве фотокатода в трубках используются фоторезистор, т.е.явление внутреннего фотоэффекта, что сдвигает область чувствительности до 2-2,5 мкм.

Рис.47. Розеточная траектория сканирования при колебательно-вращательном движении сканирующего поля

Рис. 48.Траектория сканирования при колебательно-вращательном движении сканирующего поля для rа- спиральная, б- розеточная

Рис.49 Спиральная а) и розеточная б) траектории сканирования при

Вращательно-вращательном движении сканирующего поля при 2r=R

Рис.50 Спиральная траектория для случая 2r

Рис. 51. Розеточная траектория для случая 2r



h

a
О l X


а)

б )

T пр t обр.

Рис. 52. Построчная или прогрессивная траектория сканирования

Рис.53. Некоторые специальные траетории сканирования: а- гусеница: б – следящая развертка

Наибольшее распространение в автоматических ОЭП получили диссектор и видикон, соответственно системы мгновенного действия с накоплением.

В системах мгновенного действия энергия излучения каждой точки обозреваемого поля преобразуется в сигнал только в течение времени прохождения через неё сканирующего луча. Это время существенно меньше времени обзора всего поля, т.е. здесь не используется возможность накопления энергии.

В системах c накоплением осуществляется суммирование энергии излучаемой данной точкой поля в течении всего времени обзора, что позволяет повысить их чувствительность по сравнению с системами мгновенного действия.

Пояснить работы системы с накоплением удобно на примере устройства иконоскопа.

Фотокатод телевизионной трубки (мишень) можно представить в виде большого количества отдельных, изолированных друг от друга фотоэлементов, соединенных последовательно с источником э.д.с. [(см. рис. 54), R– сопротивление нагрузки, С – распределенная емкость фотокатода].

Под действием излучения одной из точек i поля обзора происходит заряд конденсатора С i фототоком I 3 в течение времени работы ключа К- времени экспозиции.

Системы с накоплением относительно сложны в эксплуатации, требуют стабилизации источников питания и боятся сильных засветок. В связи с этим, несмотря на меньшую чувствительность, в ОЭП широко используются диссекторы.

Диссектор

Его принцип действия заключаетсяв следующем. Полупрозрачный фотокатод (рис.55), на котором проектируется изображение светящегося объекта, испускает внутрь трубки фотоэлектроны в количестве, пропорциональном его освещенности. Образовавшееся электронное изображение переносится с фотокатода к электронному умножителю с помощью электрического и магнитного поля.

Для получения сигналов от всех элементов изображения производится развертка с помощью магнитной системы (5)/ 4- ускоряющее поле/.

Диссекторы выпускаются с различными типами фотокатодов, обеспечивающих чувствительность от УФ до ближней ИК области длин волн.

Видикон (рис.56)

На полупрозрачную сигнальную пластину (металлическую) 1 нанесен слой полупроводника 2. Фотоизображение считывается электронным лучом. Нормальное падение последнего обеспечивается сеткой вблизи сигнальной пластины. Электронный луч, перемещаясь по мишени, оставляет на ней электроны, приводя потенциал участка полупроводника к потенциалу катода. Чем меньше освещенность участка мишени, тем больше сопротивление полупроводника, тем меньше, следовательно, необходимо электронов для компенсации изменения заряда, т.е. считывания рельефа изображения.

Рис.54. Схемы передающей телевизионной трубки с накоплением:

а - принципиальная: б – эквивалентная

Рис.55. Диссектор

Рис.56. Видикон

Сканирование световым лучом

По принципу действия к системам с электронным сканированием близки устройства со сканированием световым лучом. Пример такого устройства –термоэлектронный преобразователь изображения – термикон (рис.57)

Приемная поверхность термикона состоит, в том числе, из очень тонкой ИК чувствительной пленки. С обратной стороны последней наносится специальный фотоэлектрический слой, эффективность которого зависит от температуры. На фотослой проецируется изображение яркого светящегося пятна, движущегося по экрану электронно-лучевой трубки по заданному закону. В зависимости от положения светящегося пятна на фотослое и распределения температуры на поверхности П количество эмитируемых электронов и фототок в цепи кольцевого коллектора изменяется на 2-3% на каждый градус изменения температуры. Изменение фототока усиливается и управляетэлектроннолучевая трубка И2.

Область применения (расширяющаяся) – в МДП структурах. Максимальное разрешение близко 50 линий на кадр при  1.


  1. Оптико-механическое сканирование.

В оптико – механических сканирующих устройствах процесс сканирования осуществляется за счет изменения направления оптической оси ОЭс. При этом общее поле обзора последовательно анализируется мгновенным полем зрения оптической системы. Общая классификация таких устройств приведена на рис.58.

Сканирование может производится за счет движения всей оптической системы прибора или её элементов – зеркал, призм, клиньев, линз, диафрагм. Оптико-механические системы, в которых сканирование осуществляется диафрагмой (щелью) , движущейся в фокальной плоскости иногда называют экранирующими. Широко известный пример – диск Нипкова. Своеобразные методы сканирования используются в системах с волоконной оптикой. Сканирование может осуществляться также путем изменения коэффициента преломления или других оптических свойств материалов, входящих в систему. Сканирование движения всей системы осуществляется в тех случаях, когда возможно использовать перемещение платформы, на которой размещается ОЭС. Для обзора более широкой полосы на местности в таких системах часто используется сканирование по строке. (рис.59).


  • Сканирование зеркалами: различают сканирование в пространстве предметов (зеркало размещается перед объективом, рис.60) и сканирование в пространстве изображений (используется широкоугольный объектив, обеспечивающий высокое качество изображения по всему полю обзора, зеркало за ним, рис. 61).
Наряду с простым зеркалом в сканирующей системе может использоваться система зеркал, зеркальные призмы, пирамиды и т.д. (рис.62-64). В качестве исполнительных механизмов применяются шаговые двигатели, кулачковые механизмы и т.д.

Рис.57. Принципиальная схема термикона.

^ СКАНИРОВАНИЕ В ПРОСТРАНСТВЕ ПРДМЕТОВ

ОПТИКО-МЕХАНИЧЕСКИЕ СКАНИРУЮЩИЕ УСТРОЙСТВА

СКАНИРОВАНИЕ В ПРОСТРАНСТВЕ ИЗОБРАЖЕНИЙ

^ СКАНИРОВАНИЕ ЗА СЧЕТ ДВИЖЕНИЯ ВСЕЙ ОПТИЧЕСКОЙ СИСТЕМЫ

СКАНИРОВАНИЕ ПОДВИЖНЫМИ ЭЛЕМЕНТАМИ ОПТИЧЕСКОЙ СИСТЕМЫ

^ СКАНИРОВАНИЕ ЩЕЛЬЮ, ДВИЖУЩЕЙСЯ В ПЛОСКОСТИ ИЗОБРАЖЕНИЯ

СКАНИРОВАНИЕ ЗА СЧЕТ ИЗМЕНЕНИЯ ОПТИЧЕСКИХ СВОЙСТВ ЭЛЕМЕНТОВ, ВХОДЯЩИХ В СИСТЕМУ

^ СКАНИРОВАНИЕ В СИСТЕМАХ С ВОЛОКОННОЙ ОПТИКОЙ

Рис. 58. Классификация оптико-механических

Сканирующих устройств

Рис. 59. Однострочное сканирование с движущейся платформы.

Рис. 60.Сканирование в пространстве предметов:


поле зрения; 7 – поле обзора

Рис. 61. Сканирование в пространстве изображений:


  1. сканирующее зеркало; 2 – объектив;3 – диафрагма;
4 – конденсор; 5 – приемник излучения;6 – мгновенное

поле зрения; 7 – поле обзора

Эффективность ОЭП, предназначенных для обзора пространства с неподвижного носителя может быть существенно повышена за счет применения черезстрочной развертки сканирующего луча (рис.65) линейки многоэлементного приемника. Достигаемый результат – уменьшение числа элементов приемника и уменьшение полосы частот коммутационно-усилительного тракта, причем это уменьшение равно m раз, где m = N (числу граней призмы). Недостаток – возможность пропуска цели, именно поэтому ОЭС (платформа) должна быть неподвижна.


  • Сканирование отверсием в непрозрачном экране - наиболее простой способ сканирования. Классический пример диск Нипкова. Пример этих устройств показан на рис. 66,67. Отверстие в диске Д (рис.66) расположено таким образом, что изображение, ограниченное диафрагмой ДП последовательно анализируется по строкам так, что когда одно отверстие выходит за пределы окна диафрагмы ДП, другое выходит прочерчивая следующую строку. Одна из последних конструкций с указанным механизмом сканирования – тепловизор “Янтарь” (70-е годы, поле обзора 5х4, мгновенное поле зрения 5, частота кадров 25 Гц), которым удалось убеспечить минимально обнаруживаемую разность температур =0,2 – 0,3С.
Зенитный теплопеленгатор - одна из таких (её исллюстрирует рис. 67) проста по конструкции и эффективна. Зеркало (D~1500 мм, f~640 мм) создает изображение точечной цели в плоскости непрозрачной диафрагмы с вырезом, вращаемой двигателем М 2 (М 1 – модулятор). Сигнал запитывает неоновую лампочку Л, которая вращается с частотой диафрагмы М 2 в пределах окружности, удобной для восприятия оператором. Легко видеть, что при условии точной ориентации приемного зеркала на цель, лампочка очерчивает полный круг и вспыхивает в определенном секторена краткие моменты времени при прочих условиях

  • Сканирование путем управления оптическими свойствами элементов, входящих в систему. Управление осуществляется магнитным или электрическим полем. Известно, например, что такие материалы, как нитробензол, кварц, некоторые кристаллы изменяют показатель преломления n при воздействии электрического поля. Для сканирования можно использовать систему фильтров как на рис.68, выполненных из чередующихся слоев некоторых материалов, например, сульфида цинка и креолита. Такие фильтры пропускают только монохроматическое излучение, длина волны которых в четыре раза больше толщины l фильтра. Если изготовить фильтр в виде клина и направить на него монохроматическое излучение, то последнее пройдет только в той части, где толщина соответствует четверти длины волны (при условии n = /4 ). Введя второй фильтр, развернутый на 90, обеспечим возможность прохождения только той части излучения, которая соответствует участкам фильтров с толщиной 1/4. Подводя к фильтрам напряжение, можно перемещать линии равной толщины и т.о. обеспечить сканирование изображения.
(На рис.68 – ГКР – генератор кадровой и строчной разверток; КФГ, КФВ – клиновые фильтры горизонтальной и вертикальной развертки).

Рис.62. Типы сканирующих зеркал: а - вращающееся двустороннее(двугранное) зеркало; б – зеркало, вращающееся вокруг оси, неперпендикулярной к нему; в – «крест» из зерал 1 и 2; г – зеркало, качающееся в двух плоскостях; д – система из двух вращающихся зеркал; е – два зеркала, вращающихся или качающихся вокруг взаимно перпендикулярных осей; ж – вращающаяся зеркальная N – гранная призма; з – вращающаяся зеркальная N – гранная пирамида.

Рис.63. Сканирующее зеркало в виде многогранной призмы:

Об – объектив; Пр –приемник из М элементов;

З – зеркало с N гранями; НП – направление полета

Рис. 64. Основные принципы сканирования плоскопараллельной пластинкой (призмой): а – ход лучей; б – призма, эквивалентная пластинке толщиной ; в – поле обзора и поворот пластинки при неподвижном приемнике (диафрагме поля).

Рис. 65. Схема сканирования и расположения чувствительных слоев

многоэлементного приемника при чересстрочной развертке.

Рис.66. Система механичесого телевидения с диском Нипкова:

а – приемник излучения большой площади;

б – небольшой приемник и конденсор;

в – сканирующий диск

Рис. 67. Сканирование щелью в зенитном теплопеленгаторе

Рис. 68. Сканирующее устройство с клинообразными фильтрами.

Система координат оптико-механического сканера.

Изображение строки в оптико-механическом сканере формируется за счет вращения зеркала, а строки – за счет перемещения носителя съемочной системы. Таким образом, каждый пиксель изображения имеет свои элементы внешнего ориентирования.

Ө – угол поля зрения сканера.

Началом системы координат сканера является точка S – точка пересечения оси вращения зеркала и главной оптической оси объектива. Ось x z совпадает с биссектрисой угла поля зрения съемочной системы. Ось y дополняет систему до правой.


Система координат сканерного изображения задается также как и для оптико-электронного сканера, т.е. ось y с совпадает c одной из строк изображения, начало системы координат о находится в середине строки, а ось x с – дополняет систему до правой.

По измеренным координатам точки изображенияx с y с можно получить время формирования изображения данного пикселя, а следовательно и элементы внешнего ориентирования сканера в этот момент.

Направление на точку местности М (рис.10) в системе координат сканера определяет единичный вектор r m , координаты которого можно определить следующим образом:

(18)

- размер кадра в пикселях вдоль оси y .

Определение координат точек местности по изображениям, полученным с помощью оптико-механического сканера выполняется аналогично тому, как это делалось для изображений, полученных оптико-электронным сканером.

Принцип действия лазерно-локационных съемочных систем

Лазерно-локационная съемочная система по принципу действия напоминает оптико-механический сканер, только вместо диафрагмы имеется лазер, с помощью которого сканируется (облучается) поверхность земли (рис.11). Таким образом, эта съемочная система относится к активным системам. Лазерный луч с определенной частотой посылается в сторону поверхности земли, который возвращается в съемочную систему и фиксируется в приемнике излучения в виде интенсивности отраженного сигнала. Кроме того, фиксируется время прохождения лазерного луча от лазера до поверхности земли и обратно до приемника излучений, что позволяет определить расстояние D до данной точки земли. Фиксируя угол поворота зеркала φ можно определить координаты точки поверхности земли в системе координат сканера Sxyz , а зная элементы внешнего ориентирования сканера в этот момент, можно вычислить координаты этой точки в системе координат объекта OXYZ . Таким образом, результатом работы лазерного сканера является трехмерная модель снимаемого объекта в виде облака точек с известными координатами XYZ и интенсивностью отраженного сигнала.

Система координат лазерного сканера задается следующим образом (рис.11). Начало системы S совпадает с точкой пересечения оси вращения зеркала и оптической осью системы. Ось x совпадает с осью вращения зеркала. Ось z проходит через центр проекции S и совпадает с биссектрисой угла поля зрения сканера Ө . Ось у дополняет систему до правой. Положительное направление оси x совпадает с направлением полета.

Координаты вектора SM в системе координат сканера определяют как:

(19)

Если известны элементы внешнего ориентирования , лазерного сканера в момент измерения наклонного расстояния D , то координаты точки М в системе координат объекта можно определить по известным формулам:

(20)

Элементы внешнего ориентирования , лазерного сканера во время съемки определяются с помощью навигационного комплекса в составе дифференциальной GPS- системы и инерциальной системы.

Принцип формирования радиолокационных изображений.

Системы координат.

На рис.12 показан принцип радиолокационной съемки. Короткий импульс от передатчика, расположенного на носителе (самолете или спутнике), излучается в вертикальной плоскости с помощью направленной антенны. При достижении поверхности земли волна отражается. Часть отраженной энергии возвращается к приемнику, установленному на том же месте, что и передатчик. Принятая энергия квантуется. В результате получаются сигналы, пропорциональные принятой в данный момент энергии, зависящей от отражающей способности определенного участка местности. Одновременно измеряются наклонные дальности от передатчика до каждого из элементарных участков местности. Эти элементарные участки местности определяют разрешение съемочной системы. Таким образом, плотность пикселя радиолокационного изображения зависит от интенсивности отраженного радиосигнала от соответствующей точки объекта, а положение пикселя вдоль строки пропорционально наклонной дальности до данной точки. Строки изображения формируются за счет движения носителя.

Если расстояния до точек объекта равны между собой (D 1 и D 2 на рис. 13), то эти разные точки объекта изобразятся в одной точке на снимке. Диапазон измеряемых расстояний и соответственно полоса обзора определяются параметрами съемочной системы и лежат в пределах D o и D к начальной и конечной измеряемых дальностей.

Чтобы увеличить захват местности (полосу обзора), нужно увеличить время от начала посыла импульса до их приема.

Система координат радиолокационного изображения задается следующим образом. Ось y c совпадает с одной из строк изображения. Начало системы координат о совпадает с точкой соответствующей начальной дальности D o , которая фиксируется в момент съемки. Ось x c дополняет систему до правой.

Таким образом, измерив координатуy c любой точки изображения можно узнать наклонную дальность до этой точки.

где k – масштабный коэффициент, который определяется в результате калибровки системы.

Система координат самой радиолокационной системы задается следующим образом (рис.15).

Начало системы координат совпадает с точкой излучения радиоимпульса. Оси y,z лежат в плоскости излучения импульсов. Ось x дополняет систему до правой.

Плоскость излучения радиоимпульсов может быть произвольно ориентирована в пространстве

Читайте также: