Как называются устройства для прослушки. Наноэлектронные приборы и устройства

Шишкин Г. Г., Агеев И. М.

Рассматриваются особенности квантовых компьютеров, электронных устройств на сверхпроводниках, а также приборов нанобиоэлектроники. Каждая глава снабжена контрольными вопросами и заданиями для самоподготовки.

Для студентов технических вузов, аспирантов, преподавателей и практических специалистов в области электроники.

Издательство: БИНОМ. Лаборатория знаний
Год издания: 2011
Формат: 60x90/16
Страниц: 408

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Раздел 1. Физические и технологические основы

наноэлектроники. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Глава 1. Теоретические основы наноэлектроники. . . . . . . . . . . . . . . . . . . . .9

Основные положения квантовой механики,

используемые в наноэлектронике. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2. Момент импульса и спин. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

1.3. Магнитный резонанс. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4. Туннельный переход через потенциальный барьер. . . . . . . . . . . . . . . . 21

1.5. Квантовые потенциальные ямы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6. Интерференционные эффекты в наноструктурах. . . . . . . . . . . . . . . . . .27

Элементы зонной теории и транспортные явления

в наноразмерных структурах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

1.8. Сверхрешетки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Плотность энергетических состояний

в низкоразмерных структурах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.10. Одноэлектроника. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Физические основы спинтроники. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Глава 2. Физические свойства наноструктур

и наноструктурированных материалов. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.1. Классификация низкоразмерных структур и наноматериалов. . . . . . . . . 54

2.2. Свойства двумерных структур. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3. Свойства одномерных структур и материалов. . . . . . . . . . . . . . . . . . .76

2.4. Свойства углеродных наноструктур. . . . . . . . . . . . . . . . . . . . . . . . . .80

Свойства наночастиц и материалов с наночастицами. . . . . . . . . . . . . . . . .92

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Глава 3. Технология создания наноматериалов

и наноструктур и методы их диагностики. . . . . . . . . . . . . . . . . . . . . . . . 97

3.1. Методы диагностики нанообъектов. . . . . . . . . . . . . . . . . . . . . . . . .97

Эпитаксиальные методы создания тонких пленок

и гетероструктур. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

3.3. Технология создания квантовых точек и нитей. . . . . . . . . . . . . . . . 112

Основные технологические методы создании

углеродных наноматериалов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

3.5. Методы зондового сканирования. . . . . . . . . . . . . . . . . . . . . . . . . .122

Нанолитография. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Раздел 2. Наноэлектронные приборы. . . . . . . . . . . . . . . . . . . . . . . . . . 129

Глава 4. Полупроводниковые гомо+ и гетероструктуры

и приборы на их основе. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1. Электрические гомо+ и гетеропереходы. . . . . . . . . . . . . . . . . . . . .131

4.2. Туннельные диоды. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

4.3. Биполярные транзисторы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Полевые транзисторы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . .232

Глава 5. Наноэлектронные приборы на основе

квантово+размерных структур. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.1. Резонансно+туннельные приборы. . . . . . . . . . . . . . . . . . . . . . . . . 234

5.2. Одноэлектронные приборы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.3. Спинтронные приборы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5.4. Полупроводниковые фотоприборы. . . . . . . . . . . . . . . . . . . . . . . . 268

Полупроводниковые инжекционные лазеры и светодиоды. . . . . . . . . . . 290

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Глава 6. Базовые логические элементы квантовых компьютеров. . . . . . . 318

6.1. Общие сведения о квантовых компьютерах. . . . . . . . . . . . . . . . . .318

Базовые элементы полупроводникового кремниевого

квантового компьютера на основе ядерно+магнитного

резонанса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .324

Базовые элементы для квантовых компьютеров

на квантовых точках. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Логические элементы квантовых компьютеров

на сверхпроводниках. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . .341

Глава 7. Сверхпроводимость и электронные устройства

на сверхпроводниках. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.1. Основные свойства сверхпроводящего состояния. . . . . . . . . . . . . 342

7.2. Сверхпроводники 1+го и 2+го рода. . . . . . . . . . . . . . . . . . . . . . .355

Джозефсоновские переходы и их модели. . . . . . . . . . . . . . . . . . . . . .364

7.4. Аналоговые сверхпроводниковые устройства. . . . . . . . . . . . . . . . 374

Криотроны, логические элементы и элементы памяти

на джозефсоновских переходах. . . . . . . . . . . . . . . . . . . . . . . . . . . .383

Электронные устройства, использующие ВТСП. . . . . . . . . . . . . . . . . . 389

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Глава 8. Нанобиоэлектроника. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

8.1. Общие положения и термины. . . . . . . . . . . . . . . . . . . . . . . . . . 391

8.2. Электропроводные свойства ДНК. . . . . . . . . . . . . . . . . . . . . . . .394

8.3. Приборы на основе биоэлектроники. . . . . . . . . . . . . . . . . . . . . . 396

Конечный биоавтомат Шапиро. . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . 403

Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404

Тем, что информация может иметь очень высокую ценность сегодня уже никого не удивишь. Но если раньше реально опасаться утечки информации мог лишь ограниченный круг лиц, то сегодня с этим может столкнуться практически каждый. Первое, что обычно приходит на ум, это радиомикрофоны. Они широко распространены, т.к. собрать "жучок" по описанию в радиолюбительской литературе совсем несложно. Автору даже известен случай успешной сдачи экзаменов студентами при помощи радиомикрофона. Однако обнаружить такие радиомикрофоны можно без особого труда, стоит только собрать несложный детектор поля.

Вместе с тем существует иной способ снятия информации. Известно, что звуковые волны в помещении вызывают микровибрации оконных стекол. Если направить на стекло ИК-поток, то большая его часть пройдет через стекло внутрь, однако будет и отражение. При этом отраженный поток окажется промодулированным речевой информацией. Для того чтобы оценить реальные возможности похищения информации таким путем и найти эффективный способ противодействия, автором была разработана экспериментальная схема прослушивающего устройства. Оно стоит из двух относительно независимых частей: ИК-передатчика и ИК-приемника.

Принципиальная схема ИК-передатчика показана на рисунке 1. Основу передатчика составляет генератор прямоугольных импульсов на микросхеме D1. Выходной сигнал генератора с частотой 35 кГц поступает на базу транзистора VT1, который совместно с VT2 образует составной транзистор Дарлингтона. При помощи этого транзистора коммутируется ИК-светодиод VD1.


Puc.1

Отраженный сигнал поступает на вход приемника, схема которого показана на рисунке 2.


Puc.2

Налаживание правильно собранной схемы сводится к подстройке частоты передатчика резистором R1 до получения на выходе приемника максимальной амплитуды сигнала.

ОУ К1401УД4 не имеет прямой замены среди отечественных микросхем, но вместо А1.1 и А1.2 можно применить любые ОУ с полевыми транзисторами на входе и частотой единичного усиления не менее 2,5 МГц. А1.3 можно заменить на любой ОУ широкого применения. Автор проверял такой вариант: КР574УД2Б и К140УД708. Заметно повысить характеристики приемника можно если применить малошумящие ОУ TLE2074CN и TLE2144CN фирмы Texas Instruments. Цоколевка этих микросхем полностью совпадает с цоколевкой К1401УД4. Светодиод и фотодиод можно взять зарубежного производства для систем ДУ

В авторском варианте схема с К1401УД4 обеспечивала уверенный съем информации с расстояния 5-10 метров, вариант с TLE2074CN обеспечивал съем информации с расстояния до 15-20 метров, кроме того этот вариант в силу более низкого уровня шумов позволял уверенно разбирать тихие слова даже на фоне громкой музыки.

Чувствительность устройства можно повысить дополнительными ИК-светодиодами, включенными параллельно VD1 передатчика (через свои ограничительные резисторы). Можно также увеличить коэффициент усиления приемника добавив каскад, аналогичный каскаду на А1.2, для этого можно использовать свободный ОУ микросхемы А1.

Конструктивно светодиод и фотодиод расположены так, чтобы исключить прямое попадание ИК-излучения светодиода на фотодиод, но уверенно принимать отраженное излучение. Не исключено применение оптических систем, например таких как в Л.2. Питание приемника осуществляется от двух батареек типа "Крона", передатчик питается от четырех элементов типа R20 суммарным напряжением 6В (1,5В каждый).

В заключение следует напомнить, что использование этого устройства в некоторых случаях запрещено законодательством РФ и может привести к административной или уголовной ответственности.

Наноэлектронные приборы и устройства создаются с помощью методов нанотехнологии. Под нанотехнологией подразумевается совокупность технологий, процессов и методик, основанных на манипуляциях с отдельными атомами и молекулами с целью получения новых материалов, приборов и устройств. Нанотехнология может использоваться в электронике, материаловедении, химии, механике, биомедицине и других областях науки и техники. А атомной и квантовой физике характерной единицей длины принято считать величину 1 А или 10 -10 м., данный выбор обусловлен тем, что ангстрем соответствует диаметру самого маленького из атомов - атома водорода. Диаметры других атомов могут лишь немного превышать 2 А. Нанометр в 10 раз больше.

Область нанодиапазона от 1 нм до 100 нм. В живой природе, состоящей так же, как и неживая материя, из атомов, молекулы протеина и липидов имеют размеры до 10 нм. Масштаб рибосом и вирусов лежит в пределах 100 нм. Например, один из продуктов нанотехнологии - нанотрубки,а также элементы сверхбольших интегрированных схем тоже имеют размеры ~100нм. Именно это дает надежду на успешное совмещение технологий живых и неживых систем, создание микроминиатюрных устройств, лекарств. Следует отметить, что с возрастанием производительности микрочипов они становятся дешевле и потребляют меньше энергии по сравнению с чипами предшествующего поколения.

Рис. 5.

По мере приближения размеров твердотельных структур к нанометровой области все больше проявляются квантовые свойства электрона. В его поведении преобладающими становятся волновые закономерности, характерные для квантовых частиц. С одной стороны, это приводит к нарушению работоспособности классических транзисторов, использующих закономерности поведения электрона как классической частицы, а с другой - открывает перспективы создания новых уникальных переключающих, запоминающих и усиливающих элементов для информационных систем. Это и есть основные объекты исследований и разработок новой области электроники - наноэлектроники.

Разработанные за последние годы наноэлектронные элементы по своей миниатюрности, быстродействию и потребляемой мощности составляют серьезную конкуренцию традиционным полупроводниковым транзисторам и интегральным микросхемам на их основе как главным элементам информационных систем. Уже сегодня техника вплотную приблизилась к теоретической возможности запоминать и передавать 1 бит информации (0 и 1) с помощью одного электрона, локализация которого в пространстве может быть задана одним атомом. Ожидает практического разрешения и идея аналогичных однофотонных элементов.

Широкое применение одноэлектронных и однофотонных элементов для создания информационных систем пока сдерживается недостаточной их изученностью, а главное, отсутствием удобных для массового производства технологий, позволяющих конструировать требуемые структуры из отдельных атомов. Такие возможности существуют только в исследовательских лабораториях. Однако современные темпы развития электроники позволяют уверенно прогнозировать промышленное освоение нанотехнологии, а вместе с ней и наноэлектроники уже в начале XXI века.

В основе приборов наноэлектроники лежат волновые свойства электрона и связанные с этим другие физические явления и эффекты. Движение электрона и связанной с ним волны де Бройля в наноразмерных твердотельных структурах определяется эффектами, споряженными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры. И эти эффекты будут вносить тем больший вклад в электрические процессы в элементе, чем меньше его размер. Когда же размер элемента сравнится с длиной волны электрона, эти эффекты станут преобладающими.

На данном рисунке приведена уникальная фотография, экспериментально подтверждающая наличие дебройлевской волны. С помощью туннельного микроскопа удалось рассадить 48 атомов железа на поверхности меди. Сформирован «квантовый загон» радиусом 7,1 нм. Волны внутри загоны представляют собой стоячие волны зарядовой плотности, соответствующие решению уравнения Шредингера. Возникновение или отсутствие изображения зависит от положения вновь имплантированного атома. Если дебройлевские волны складываются в фазе в процессе конструктивной интерференции, то изображение появляется. При деструктивной интерференции оно исчезает. Эта картинка - одно из доказательств волновой природы отдельного атома или электронов и внешних его орбит.

Решение проблем перехода от микро- к наноэлектронике вовсе не отрицает дальнейшего пути развития микроэлектроники. Однако становление наноэлектроники сулит новые научные достижения и разработки в области технологии во многих отраслях науки и техники. Развитие научных исследований наноструктур и нанотехнологий позволит получить материалы и приборы с новыми уникальными свойствами и, следовательно, решить ряд актуальных задач как в области электроники, так и во всех остальных отраслях науки и промышленности. В наномире будут работать и «старые» идеи схемотехнической электроники, в основе которых лежит использование усовершенствованного транзистора. Вместе с тем, наномир способствует рождению свежих идей, связанных с волновыми свойствами электрона, с солитонами, как носителями информационного сигнала, с новыми материалами, с новой технологией. Поэтому и появляются новые приборы и устройства наноэлектроники, реализованные либо на совершенно новых принципах, либо на хорошо забытых методах обработки информации.

Самодельное шпионское и охранное оборудование

А. С. Уваров
Радиоконструктор, 2001 год , № 3, стр 24- 25

Внимание!!! Применение подобных устройств может быть расценено как противоправное (вмешательство в личную жизнь, промышленный шпионаж и так далее) и может повлечь ответственность! Поэтому данное устройство было разработано автором исключительно в целях проверки эффективности способов защиты от подобных прослушивающих устройств.

Как известно утечка информации может иметь очень негативные последствия и поэтому возникает множество вопросов относительно защиты от различных подслушивающих устройств.

Как известно способов прослушки может быть несколько- тайное подключение к телефонной линии, направленные или радиомикрофоны. Способы борьбы с такими устройствами более-менее известны- это и различные блокираторы телефонных линий, шифраторы речи и приборы для поиска жучков.

Однако существует и еще один способ прослушки- это съем информации с оконного стекла. Как известно во время разговора возникают звуковые волны, которые и вызывают микровибрацию стекол на окнах. Если на стекло направить инфракрасный источник излучения, то отраженный сигнал будет промодулирован речевой информацией.

От данного способа шпионажа существует способ защиты и он достаточно прост- нужно просто заставить оконное стекло немного вибрировать и тогда съем информации с него будет не возможен.

Чтобы проконтролировать эффективность защиты от подобных способов прослушки, автором и был создан данный прибор: это устройство для съема речевой информации с оконного стекла работающее в инфракрасном диапазоне.

Устройство состоит из двух частей: генератор инфракрасных импульсов (рисунок 1) и устройство для приема отраженного сигнала (рисунок 2).

Если Вас заинтересовала данная схема, то Вы можете ознакомиться с нею более подробно в журнале-источнике, скачав его в нашей бесплатной библиотеке (ссылка в начале страницы).

На дворе 21 столетие, - время, когда давно наступил век информационных технологий, и для нас, живущих в эту эру, самым важным и дорогим товарам стала информация. В сегодняшние дни для получения необходимой информации заинтересованные лица могут применить любые доступные им средства. А установка и использование различной прослушивающий аппаратуры, такой как жучки, радиомикрофоны, подслушивающие устройства, давно не является исключительной прерогативой спецслужб - сейчас это может сделать чуть ли не каждый.

Говоря о способах получения информации, мы фокусируемся именно на способах прослушивания помещений при помощи скрытых технических средств. В большинстве случаев оно выполняется с помощью направленных микрофонов, телефонов, GSM передатчиков, радиожучков, лазерных устройств съема информации. Согласно конституции для граждан может быть введено ограничение на неприкосновенность частной жизни, но только по санкции суда, к сожалению, этот принцип часто нарушается. Происходит это из-за высокой криминализации общества, а также вытекающей из этого потребности граждан в самозащите.

Многие даже не догадываются, что прослушивающие устройства появились задолго до нашего времени. Естественное желание знать тайны было свойственно людям во все времена. Тогда как до XX столетия приходилось обходится скрытыми комнатами, которые давали возможность находится рядом при интересных разговорах, то в настоящее время возможности для подслушивания стали существенно шире. Впервые широкую огласку приобрела история с "жучками" в 1972 году в Соединенных Штатах. В то время группа специалистов при содействии некоторых сотрудников предвыборного штаба Никсона незаметно проскользнула в штаб -квартиру кандидата от партии демократов. После того, как не было найдено полезных документов, проникшие установили там радиомикрофоны. Эти жучки позволили узнать о чем разговаривают активисты в конкурирующем штабе. В результате дело получило широкую огласку. Таким образом "жучки" перестали быть лишь инструментом спецслужб, стали методом доступным для гражданских применений - корпоративного, политического шпионажа, а также начали использоваться для частного сыска.

В настоящее время прослушивание разговоров может организовать почти каждый. Для этого не применяются сложные технологии. Любой подкованный технический специалист может "состряпать" такое устройство за день. Главным техническим средством для прослушки является жучок - радиомикрофон. Со временем изменились лишь его размеры, а от модели к модели они в основном различаются только маскировкой. Главная тенденция последнего времени - уменьшение габаритов компонентов электронной техники. Наиболее распространённые прослушивающие устройства которые используются описаны ниже.

Радиожучки

Жучок с радиопередатчиком - наиболее удобное для установки устройство для скрытого прослушивания. В большинстве случаев, они содержат радиопередатчик в УКВ диапазоне. Бывают как временные так и установленые стационарно. Те что устанавливаются стационарно запитаны от электросети, временные жучки запитаны от элемента питания - батарейки или аккумулятора. Чаще всего подобные устройства устанавливают в бытовую технику, розетки, осветительные приборы, прочие элементы интерьера. Временные приборы, как правило, рассчитаны на сравнительно короткий срок работы, устанавливаются тайно. Часто, для такого вида работы привлекаются сотрудники работающие на объекте или посетители. Жучки стараются установить в тех местах, где найти их будет затруднительно. Бывает такое, что прослушивающие устройства маскируются под повседневные предметы, которые часто используют в работе или интерьере и находятся на видном месте. Это могут быть шариковые ручки, сувениры, малозаметные безделушки.

Основным недостатком временных устройств есть то, что они ограничены временем автономной работы. Период времени автономной работы сильно зависит от мощности радиопередатчика и емкости элементов питания. Дальность перехвата разговоров сильно зависит от чувствительности микрофона встроенного в жучок, разговоры принимаются на расстоянии от 3 до 25 метров. При этом радиус передачи снятой информации по радиоканалу может составлять от нескольких десятков до сотен метров. Иногда для увеличения дальности передачи могут быть использованы промежуточные ретрансляторы. Установка жучков на металлических предметах, трубах отопления может служить как дополнительная антенна для усиления.

Радиозакладки выпускаемые серийно работают в разных частотных диапазонах - от единиц мегагерц до гигагерца. В импортных образцах чаще всего используются частоты 20-25 МГц, 130-180 МГц, 390-520 МГц. Чем выше частота передачи, тем больше дальность работы передатчиков в условиях помещения с кирпичными и бетонными стенами. Но для таких частот требуется специальная приемная аппаратура. Для защиты от обнаружения, профессионалы иногда применяют методы, которые позволяют растянуть спектр сигнала, используют двойную модуляцию несущей частоты, применяют другие похожие схемы.

Телефонные "жучки"

Основное предназначение телефонных "жучков" - снимать и передавать разговоры в закрытой комнате при положенной телефонной трубке с передачей данных в телефонную линию. При такой схеме становится возможным слушать как телефонные разговоры , так и комнатные разговоры . Также используются следующие приемы направленные на прослушку разговоров в комнате: прослушка через цепь квартирного звонка, прослушивание с помощью техники СВЧ отражения от вибрирующих поверхностей с последующей демодуляцией звукового сигнала, установка GSM жучков работающих по радиоканалу телефонного оператора.

Телефоны c наружной активацией

При такой схеме контролируемый телефонный аппарат не трогают. Данные считываются с телефонной линии при положенной трубке. Такая возможность обеспечивается подачей внешнего высокочастотного сигнала, который вызывает активацию микрофона телефонной трубки. Порой получается перехватить микротоки, возникающие в электромагнитном звонке от звуковых вибраций. Таким же образом есть возможность перехватить микротоки звонка в квартире.

Сетевые передатчики

Они устанавливаются в электроприборы и передают информацию в низкочастотном, звуковом диапазоне. В качестве канала для передачи звуковой информации ими используется обычная электропроводка. Снять такой сигнал можно с любой розетки, которая находится с том же сегменте электросети. Естественно, первый же трансформатор полностью блокирует такой сигнал, по этому в соседнем сегменте электросети его считать будет невозможно.

Стационарные микрофоны

Микрофоны стационарной установки могут быть замаскированы и установлены в самых неожиданных местах. Их соединяют незаметными тонкими проводами с пунктом прослушки, который создается вблизи контролируемого помещения. Хорошими микрофонами могут стать столешницы, полки для документов с жестко прикрепленными к ним пьезодатчиками. Провода от таких микрофонов могут быть протянуты под гипсокартоном, обоями, в плинтусах либо под ковролином. Вывод проводов зачастую делают в местах вывода телефонных или компьютерных коммуникаций, входящих в помещение. Основным недостатком такого рода прослушивающих устройств является необходимость длительной предварительной подготовки помещения, в котором устанавливается спецсредство.

Подведенные микрофоны

Подведенный микрофон - устройство которое устанавливают не внутри, а снаружи контролируемого помещения. Для такой установки, безусловно, требуется иметь доступ к одной из внешних стен помещения, либо к инженерным коммуникациям, которые подводятся в объект. Для осуществления прослушки, например, можно снизу под дверь прикрепить плоский кристаллический микрофон. Если у смеженных комнат используются симметричные розетки, можно воспользоваться тем, что из одной розетки есть доступ к другой, а там уже можно поставить микрофон. В ряде случаев, можно просверлить незаметное микроотверстие в стене, и воспользоваться игольчатым микрофоном, в этом случае звук можно подвести через тонкую трубку длиной до 20-30 см.

Контактный микрофон

В качестве примера такого приспособления можно привести стандартный медицинский стетоскоп прикрепленный к микрофонному капсюлю, который подключен к усилителю. Бывает такое, что достаточно стетоскопа без дополнительной электроники.

Высококачественные датчики можно сделать из пьезо-керамических головок или обычных пьезоизлучателей. В качестве доноров могут быть использованы проигрыватели, электрические часы, игрушки с звуковыми эффектами, телефоны или сувениры. Эти устройства воспринимают малейшие колебания пластинок и тем самым позволяют снимать достаточно тихий сигнал. Но для них требуется тщательно выбирать место для установки. Оно зависит от особенностей конкретной стены или инженерной коммуникации. В ряде случаев есть смысл приклеить пьезодатчик к внешнему стеклу окна. Отличный сигнал можно снимать с труб системы отопления.

Импровизированные резонаторы

Подслушивать разговор из соседнего помещения зачастую можно и без специальной аппаратуры. Для этого достаточно бокала для вина или аналогичной по форме прочей питейной емкости. Ободок бокала сильно прижимается к стене, а дно прикладывается к уху. Эффективность такого резонатора сильно зависит от толщины, материала и конфигурации стены, а также от формы, размера и материала питейного прибора.

Есть и другие варианты для прослушивания: модуляция луча лазера вибрациями оконного стекла, съем побочных электромагнитных излучений домашней и офисной радиоаппаратуры, активация пассивных электромагнитных излучателей бесконтактным способом. Но эти методы достаточно сложны для аматеров и используются в основном профессионалами дела.

  • Программа AudioSP -
  • Читайте также: