Использование плазмы. Что такое плазма? Плазма ее использование

Агрегатные состояния вещества.

Агрегатные Состояния вещества, состояния одного и того же вещества, переходы между которыми сопровождаются скачкообразным изменением его свободной энергии, энтропии, плотности и других физических свойств. Все
вещества (за некоторым исключением) могут существовать в трёх агрегатных состояниях - твёрдом, жидком и газообразном. Так, вода при нормальном давлении p= 10l 325 Па=760 мм ртутного столба и при температуре t=00 С. кристаллизуется в лёд, а при 100°С кипит и превращается в пар. Четвёртым агрегатным состоянием вещества часто считают плазму. В отличие от других агрегатных состояний вещества плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях.

Что такое плазма?

ПЛАЗМА - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде в газе, в процессах горения и взрыва.Термин “плазма” в физике был введен в 1929 американскими учеными И.Ленгмюром и Л.Тонксом. Вещество, разогретое до температуры в сотни тысяч и миллионы градусов, уже не может состоять из обычных нейтральных атомов. При столь высоких температурах атомы сталкиваются друг с другом с такой силой, что не могут сохраниться в целостности. При ударе атомы разделяются на более мелкие составляющие - атомные ядра и электроны. Эти частицы наделены электрическими зарядами: электроны - отрицательным, а ядра - положительным. Смесь этих частиц, называемая плазма представляет собой своеобразное состояние вещества, которое очень сильно отличается от относительно холодного газа по свойствам. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, то есть, выполнено условие квазинейтральности . Средние кинетические энергии различных типов частиц, составляющих плазму, могут быть разными. Поэтому в общем случае плазму характеризуют не одним значением температуры, а несколькими – различают электронную температуру Т е, ионную температуру Т i и температуру нейтральных атомов Т а. Плазму с ионной температурой Т i < 10 5 К называют низкотемпературной, а с Т i > 10 6 К – высокотемпературной. Высокотемпературная плазма является основным объектом исследования по УТС. Низкотемпературная плазма находит применение в газоразрядных источниках света, газовых лазерах.

Несколько свойств плазмы.

v Степень ионизации

Степень ионизации определяется как отношение числа ионизованных частиц к общему числу частиц. Для низкотемпературных плазм характерны малые степени ионизации (<1%). Так как такие плазмы довольно часто употребляются в плазменных технологиях их иногда называют технологичными плазмами . Чаще всего их создают при помощи электрических полей, которые ускоряют электроны, которые в свою очередь ионизуют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи. Типичные применения низкотемпературных плазм включают плазменную модификацию свойств поверхности, плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях). Горячие плазмы почти всегда полностью ионизованы (степень ионизации ~100%). Обычно именно они понимаются под «четвертым агрегатным состоянием вещества». Примером может служить Солнце.

v Плотность

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Слово плотность плазмы обычно обозначает плотность электронов , т.е. число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объема, а число частиц в единице объема). Плотность ионов связана с ней посредством среднего зарядового числа ионов. Следующей важной величиной является плотность нейтральных атомов n 0 . В горячей плазме n 0 мала, но может тем не менее быть важной для физики процессов в плазме.

V Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом . По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов. В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний. Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счет кулоновского отталкивания.

Получение плазмы.

Чтобы перевести газ в состояние плазмы, нужно оторвать хотя бы часть электронов от атомов, превратив эти атомы в ионы. Такой отрыв от атомов называют ионизацией. В природе и технике ионизация может производиться различными путями. Самые распространенные из них:

· Ионизация тепловой энергией

· Ионизация электрическим разрядом.

· Ионизация давлением.

· Ионизация лазерным излучением.

Использование плазмы.

Наиболее широко плазма применяется в светотехнике - в газоразрядных лампах, освещающих улицы. Гуляя вечером по улицам города, мы любуемся световыми рекламами, не думая о том, что в них светится неоновая или аргоновая плазма. Пользуемся лампами дневного света. Всякий, кто имел «удовольствие» устроить в электрической сети короткое замыкание, встречался с плазмой. Искра, которая проскакивает между проводами, состоит из плазмы электрического разряда в воздухе. Дуга электрической сварки тоже плазма. Любое вещество, нагретое до достаточно высокой температуры, переходит в состояние плазмы. Легче всего это происходит с парами щелочных металлов, таких, как натрий, калий, цезий. Обычное пламя обладает некоторой теплопроводностью; оно, хотя и в слабой степени, ионизировано, то есть является плазмой. Причина этой проводимости - ничтожная примесь натрия, который можно распознать по желтому свечению. Для полной ионизации газа нужна температура в десятки тысяч градусов. Кроме того, плазма применяется в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, жестко закрепленные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел. Газовую плазму принято разделять на низкотемпературную - до 100 тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов. Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития Т), протекающие при очень высоких температурах. В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.

Что такое четвертое состояние вещества, чем оно отличается от трех других и как заставить его служить человеку.

Предположение о существовании первого из состояний вещества, выходящих за рамки классической триады, было высказано в начале ХIХ века, а в 1920-х оно получило свое название – плазма

Алексей Левин

Полтораста лет назад почти все химики и многие физики считали, что материя состоит лишь из атомов и молекул, которые объединяются в более-менее упорядоченные или же совсем неупорядоченные комбинации. Мало кто сомневался, что все или почти все вещества способны существовать в трех разных фазах — твердой, жидкой и газообразной, которые они принимают в зависимости от внешних условий. Но гипотезы о возможности других состояний вещества уже высказывались.

Эту универсальную модель подтверждали и научные наблюдения, и тысячелетия опыта обыденной жизни. В конце концов, каждый знает, что вода при охлаждении превращается в лед, а при нагревании закипает и испаряется. Свинец и железо тоже можно перевести и в жидкость, и в газ, их надо лишь нагреть посильнее. С конца XVIII века исследователи замораживали газы в жидкости, и выглядело вполне правдоподобным, что любой сжиженный газ в принципе можно заставить затвердеть. В общем, простая и понятная картина трех состояний вещества вроде бы не требовала ни поправок, ни дополнений.


В 70 км от Марселя, в Сен-Поль-ле-Дюранс, по соседству с французским исследовательским центром атомной энергии Кадараш, будет построен исследовательский термоядерный реактор ITER (от лат. iter — путь). Основная официальная задача этого реактора — «продемонстрировать научную и технологическую возможность получения энергии термоядерного синтеза для мирных целей». В долговременной перспективе (30−35 лет) на основе данных, полученных во время экспериментов на реакторе ITER, могут быть созданы прототипы безопасных, экологически чистых и экономически прибыльных электростанций.

Ученые того времени немало удивились бы, узнав, что твердое, жидкое и газообразное состояния атомно-молекулярного вещества сохраняются лишь при относительно низких температурах, не превышающих 10 000°, да и в этой зоне не исчерпывают всех возможных структур (пример — жидкие кристаллы). Нелегко было бы и поверить, что на их долю приходится не больше 0,01% от общей массы нынешней Вселенной. Сейчас-то мы знаем, что материя реализует себя во множестве экзотических форм. Некоторые из них (например, вырожденный электронный газ и нейтронное вещество) существуют лишь внутри сверхплотных космических тел (белых карликов и нейтронных звезд), а некоторые (такие как кварк-глюонная жидкость) родились и исчезли в краткий миг вскоре после Большого взрыва. Однако интересно, что предположение о существовании первого из состояний, выходящих за рамки классической триады, было высказано все в том же ХIХ столетии, причем в самом его начале. В предмет научного исследования оно превратилось много позже, в 1920-х. Тогда же и получило свое название — плазма.

От Фарадея до Ленгмюра

Во второй половине 70-х годов XIX века член Лондонского королевского общества Уильям Крукс, весьма успешный метеоролог и химик (он открыл таллий и чрезвычайно точно определил его атомный вес), заинтересовался газовыми разрядами в вакуумных трубках. К тому времени было известно, что отрицательный электрод испускает эманацию неизвестной природы, которую немецкий физик Ойген Голдштейн в 1876 году назвал катодными лучами. После множества опытов Крукс решил, что эти лучи есть не что иное, как частицы газа, которые после столкновения с катодом приобрели отрицательный заряд и стали двигаться в направлении анода. Эти заряженные частицы он назвал «лучистой материей», radiant matter.


Токамак — установка тороидальной формы для удержания плазмы с помощью магнитного поля. Плазма, разогретая до очень высоких температур, не касается стенок камеры, а удерживается магнитными полями — тороидальным, созданным катушками, и полоидальным, которое образуется при протекании тока в плазме. Сама плазма выполняет роль вторичной обмотки трансформатора (первичная — катушки для создания тороидального поля), что обеспечивает предварительный нагрев при протекании электрического тока.

Следует признать, что в таком объяснении природы катодных лучей Крукс не был оригинален. Еще в 1871 году сходную гипотезу высказал крупный британский инженер-электротехник Кромвелл Флитвуд Варли, один из руководителей работ по прокладке первого трансатлантического телеграфного кабеля. Однако результаты экспериментов с катодными лучами привели Крукса к очень глубокой мысли: среда, в которой они распространяются, — это уже не газ, а нечто совершенно иное. 22 августа 1879 года на сессии Британской ассоциации в поддержку науки Крукс заявил, что разряды в разреженных газах «так непохожи на все происходящее в воздухе или любом газе при обычном давлении, что в этом случае мы имеем дело с веществом в четвертом состоянии, которое по свойствам отличается от обычного газа в такой же степени, что и газ от жидкости».

Нередко пишут, что именно Крукс первым додумался до четвертого состояния вещества. В действительности эта мысль гораздо раньше осенила Майкла Фарадея. В 1819 году, за 60 лет до Крукса, Фарадей предположил, что вещество может пребывать в твердом, жидком, газообразном и лучистом состояниях, radiant state of matter. В своем докладе Крукс прямо сказал, что пользуется терминами, заимствованными у Фарадея, но потомки об этом почему-то забыли. Однако фарадеевская идея была все-таки умозрительной гипотезой, а Крукс обосновал ее экспериментальными данными.

Катодные лучи интенсивно изучали и после Крукса. В 1895 году эти эксперименты привели Вильяма Рёнтгена к открытию нового вида электромагнитного излучения, а в начале ХХ века обернулись изобретением первых радиоламп. Но круксовская гипотеза четвертого состояния вещества не вызвала интереса у физиков — скорее всего потому, что в 1897 году Джозеф Джон Томсон доказал, что катодные лучи представляют собой не заряженные атомы газа, а очень легкие частицы, которые он назвал электронами. Это открытие, казалось, сделало гипотезу Крукса ненужной.


Снимок испытательного запуска корейского токамака KSTAR (Korea Superconducting Tokamak Advanced Reactor) с получением «первой плазмы» 15 июля 2008 г. KSTAR, научно-исследовательский проект по изучению возможности термоядерного синтеза для получения энергии, использует 30 сверхпроводящих магнитов, охлаждаемых жидким гелием.

Однако она возродилась, как феникс из пепла. Во второй половине 1920-х будущий нобелевский лауреат по химии Ирвинг Ленгмюр, работавший в лаборатории корпорации General Electric, вплотную занялся исследованием газовых разрядов. Тогда уже знали, что в пространстве между анодом и катодом атомы газа теряют электроны и превращаются в положительно заряженные ионы. Осознав, что подобный газ имеет множество особых свойств, Ленгмюр решил наделить его собственным именем. По какой-то странной ассоциации он выбрал слово «плазма», которое до этого использовали лишь в минералогии (это еще одно название зеленого халцедона) и в биологии (жидкая основа крови, а также молочная сыворотка). В своем новом качестве термин «плазма» впервые появился в статье Ленгмюра «Колебания в ионизованных газах», опубликованной в 1928 году. Лет тридцать этим термином мало кто пользовался, но потом он прочно вошел в научный обиход.

Физика плазмы

Классическая плазма — это ионно-электронный газ, возможно, разбавленный нейтральными частицами (строго говоря, там всегда присутствуют фотоны, но при умеренных температурах их можно не учитывать). Если степень ионизации не слишком мала (как правило, вполне достаточно одного процента), этот газ демонстрирует множество специфических качеств, которыми не обладают обычные газы. Впрочем, можно изготовить плазму, в которой свободных электронов не будет вовсе, а их обязанности возьмут на себя отрицательные ионы.


Для простоты рассмотрим лишь электронно-ионную плазму. Ее частицы притягиваются или отталкиваются в соответствии с законом Кулона, причем это взаимодействие проявляется на больших расстояниях. Именно этим они отличаются от атомов и молекул нейтрального газа, которые чувствуют друг друга лишь на очень малых дистанциях. Поскольку плазменные частицы пребывают в свободном полете, они легко смещаются под действием электрических сил. Для того чтобы плазма находилась в состоянии равновесия, необходимо, чтобы пространственные заряды электронов и ионов полностью компенсировали друг друга. Если это условие не выполняется, в плазме возникают электрические токи, которые восстанавливают равновесие (например, если в какой-то области образуется избыток положительных ионов, туда мгновенно устремятся электроны). Поэтому в равновесной плазме плотности частиц разных знаков практически одинаковы. Это важнейшее свойство называется квазинейтральностью.

Практически всегда атомы или молекулы обычного газа участвуют только в парных взаимодействиях — сталкиваются друг с другом и разлетаются в стороны. Иное дело плазма. Поскольку ее частицы связаны дальнодействующими кулоновскими силами, каждая из них находится в поле ближних и дальних соседей. Это означает, что взаимодействие между частицами плазмы не парное, а множественное — как говорят физики, коллективное. Отсюда следует стандартное определение плазмы — квазинейтральная система большого числа разноименных заряженных частиц, демонстрирующих коллективное поведение.


Мощные ускорители электронов имеют характерную длину в сотни метров и даже километры. Их размеры можно значительно уменьшить, если ускорять электроны не в вакууме, а в плазме — «на гребне» быстро распространяющихся возмущений плотности плазменных зарядов, так называемых кильватерных волн, возбуждаемых с помощью импульсов лазерного излучения.

Плазма отличается от нейтрального газа и реакцией на внешние электрические и магнитные поля (обычный газ их практически не замечает). Частицы плазмы, напротив, чувствуют сколь угодно слабые поля и немедленно приходят в движение, порождая объемные заряды и электрические токи. Еще одна важнейшая особенность равновесной плазмы — зарядовое экранирование. Возьмем частицу плазмы, скажем, положительный ион. Он притягивает электроны, которые формируют облако отрицательного заряда. Поле такого иона ведет себя в соответствии с законом Кулона лишь в его окрестности, а на расстояниях, превышающих определенную критическую величину, очень быстро стремится к нулю. Этот параметр называется дебаевским радиусом экранирования — в честь голландского физика Питера Дебая, который описал этот механизм в 1923 году.

Легко понять, что плазма сохраняет квазинейтральность, лишь если ее линейные размеры по всем измерениям сильно превышают дебаевский радиус. Стоит отметить, что этот параметр возрастает при нагреве плазмы и падает по мере увеличения ее плотности. В плазме газовых разрядов по порядку величины он равен 0,1 мм, в земной ионосфере — 1 мм, в солнечном ядре — 0,01 нм.

Управляемый термояд

В наши дни плазма используется в великом множестве технологий. Одни из них известны каждому (газосветные лампы, плазменные дисплеи), другие представляют интерес для узких специалистов (производство сверхпрочных защитных пленочных покрытий, изготовление микрочипов, дезинфекция). Однако наибольшие надежды на плазму возлагают в связи с работами по осуществлению управляемых термоядерных реакций. Это и понятно. Чтобы ядра водорода слились в ядра гелия, их надо сблизить на расстояние порядка одной стомиллиардной доли сантиметра — а там уже заработают ядерные силы. Такое сближение возможно лишь при температурах в десятки и сотни миллионов градусов — в этом случае кинетической энергии положительно заряженных ядер хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.


Плазма в окружающем мире почти вездесуща — ее можно найти не только в газовых разрядах, но и в ионосфере планет, в поверхностных и глубинных слоях активных звезд. Это и среда для осуществления управляемых термоядерных реакций, и рабочее тело для космических электрореактивных двигателей, и многое, многое другое.

Правда, плазма на основе обычного водорода здесь не поможет. Такие реакции происходят в недрах звезд, но для земной энергетики они бесполезны, поскольку слишком мала интенсивность энерговыделения. Лучше всего использовать плазму из смеси тяжелых изотопов водорода дейтерия и трития в пропорции 1:1 (чисто дейтериевая плазма тоже приемлема, хотя даст меньше энергии и потребует более высоких температур для поджига).

Однако для запуска реакции одного нагрева маловато. Во‑первых, плазма обязана быть достаточно плотной; во‑вторых, попавшие в зону реакции частицы не должны покидать ее слишком быстро — иначе потеря энергии превысит ее выделение. Эти требования можно представить в виде критерия, который в 1955 году предложил английский физик Джон Лоусон. В соответствии с этой формулой произведение плотности плазмы на среднее время удержания частиц должно быть выше некоторой величины, определяемой температурой, составом термоядерного топлива и ожидаемым коэффициентом полезного действия реактора.


Легко увидеть, что существуют два пути выполнения критерия Лоусона. Можно сократить время удержания до наносекунд за счет сжатия плазмы, скажем, до 100−200 г/см3 (поскольку плазма при этом не успевает разлететься, этот метод удержания называют инерционным). Физики отрабатывают эту стратегию с середины 1960-х годов; сейчас ее наиболее совершенной версией занимается Ливерморская национальная лаборатория. В этом году там начнут эксперименты по компрессии миниатюрных капсул из бериллия (диаметр 1,8 мм), заполненных дейтериево-тритиевой смесью, с помощью 192 ультрафиолетовых лазерных пучков. Руководители проекта полагают, что не позднее 2012 года они смогут не только поджечь термоядерную реакцию, но и получить положительный выход энергии. Возможно, аналогичная программа в рамках проекта HiPER (High Power Laser Energy Research) в ближайшие годы будет запущена и в Европе. Однако даже если эксперименты в Ливерморе полностью оправдают возлагаемые на них ожидания, дистанция до создания настоящего термоядерного реактора с инерционным удержанием плазмы все равно останется очень большой. Дело в том, что для создания прототипа электростанции необходима очень скорострельная система сверхмощных лазеров. Она должна обеспечить такую частоту вспышек, зажигающих дейтериево-тритиевые мишени, которая в тысячи раз превысит возможности ливерморской системы, делающей не более 5−10 выстрелов в секунду. Сейчас активно обсуждаются различные возможности создания таких лазерных пушек, но до их практической реализации еще очень далеко.

Токамаки: старая гвардия

Альтернативно можно работать с разреженной плазмой (плотностью в нанограммы на кубический сантиметр), удерживая ее в зоне реакции не менее нескольких секунд. В таких экспериментах вот уже более полувека применяют различные магнитные ловушки, которые удерживают плазму в заданном объеме за счет наложения нескольких магнитных полей. Самыми перспективными считают токамаки — замкнутые магнитные ловушки в форме тора, впервые предложенные А.Д.Сахаровым и И.Е. Таммом в 1950 году. В настоящее время в различных странах работает с дюжину таких установок, крупнейшие из которых позволили приблизиться к выполнению критерия Лоусона. Международный экспериментальный термоядерный реактор, знаменитый ITER, который построят в поселке Кадараш неподалеку от французского города Экс-ан-Прованс, — тоже токамак. Если все пойдет по плану, ITER позволит впервые получить плазму, удовлетворяющую лоусоновскому критерию, и поджечь в ней термоядерную реакцию.


«За последние два десятка лет мы добились огромного прогресса в понимании процессов, которые происходят внутри магнитных плазменных ловушек, в частности — токамаков. В целом мы уже знаем, как движутся частицы плазмы, как возникают неустойчивые состояния плазменных потоков и до какой степени увеличивать давление плазмы, чтобы ее все-таки можно было удержать магнитным полем. Были также созданы новые высокоточные методы плазменной диагностики, то есть измерения различных параметров плазмы, — рассказал «ПМ» профессор ядерной физики и ядерных технологий Массачусетского технологического института Йен Хатчинсон, который свыше 30 лет занимается токамаками. — К настоящему времени в крупнейших токамаках достигнуты мощности выделения тепловой энергии в дейтериево-тритиевой плазме порядка 10 мегаватт на протяжении одной-двух секунд. ITER превзойдет эти показатели на пару порядков. Если мы не ошибаемся в расчетах, он сможет выдавать не менее 500 мегаватт в течение нескольких минут. Если уж совсем повезет, энергия будет генерироваться вообще без ограничения времени, в стабильном режиме».

Профессор Хатчинсон также подчеркнул, что ученые сейчас хорошо понимают характер процессов, которые должны происходить внутри этого огромного токамака: «Мы даже знаем условия, при которых плазма подавляет свои собственные турбулентности, а это очень важно для управления работой реактора. Конечно, необходимо решить множество технических задач — в частности, завершить разработку материалов для внутренней облицовки камеры, способных выдержать интенсивную нейтронную бомбардировку. Но с точки зрения физики плазмы картина достаточно ясна — во всяком случае мы так считаем. ITER должен подтвердить, что мы не ошибаемся. Если все так и будет, придет черед и токамаку следующего поколения, который станет прототипом промышленных термоядерных реакторов. Но сейчас об этом говорить еще рано. А пока мы рассчитываем, что ITER начнет работать в конце этого десятилетия. Скорее всего, он сможет генерировать горячую плазму никак не раньше 2018 года — во всяком случае по нашим ожиданиям». Так что с точки зрения науки и техники у проекта ITER неплохие перспективы.

На фото - полное солнечное затмение, наблюдавшееся во Франции в 1999 году. Остроконечное гало света - это плазма из короны Солнца

Материя существует в четырех возможных состояниях: твердом, жидком, газообразном и в виде плазмы, представляющей собой электрифицированный газ. Мы редко сталкиваемся с естественной плазмой - ее можно увидеть при грозе и северном сиянии или если смотреть на Солнце через специальный фильтр. Тем не менее, плазма, при всей ее скудности в нашей повседневной жизни, составляет более 99% наблюдаемой материи во Вселенной (то есть если не учитывать темную материю).

Как образуется плазма

Представьте себе, что вы нагреваете контейнер, полный льда, и наблюдаете, как он переходит из твердого состояния в жидкое и затем в газ. По мере того как температура поднимается, молекулы воды становятся более энергичными и возбудимыми и перемещаются все более и более свободно. Если вы продолжите нагрев, то при температуре около 12 тысяч градусов по Цельсию атомы сами начнут распадаться. Электроны убегут из ядер, оставляя позади заряженные частицы, известные как ионы, которые, в итоге, оказываются в супе электронов. Это и есть состояние плазмы.

Плазма в физике и в крови

Связь между кровью и «физической» плазмой - это больше, чем просто совпадение. В 1927 году американский химик Ирвинг Ленгмюр заметил, что, как плазма переносит электроны, ионы, молекулы и другие примеси, так и плазма крови переносит красные и белые кровяные тела и микробы. Ленгмюр стал пионером в изучении плазмы. Вместе со своим коллегой Леви Тонксом он также обнаружил, что плазма характеризуется быстрыми колебаниями электронов из-за коллективного поведения частиц.

Еще одним интересным свойством плазмы является ее способность поддерживать так называемые гидромагнитные волны-выпуклости, которые движутся через плазму вдоль линий магнитного поля, подобно тому, как колебания распространяются вдоль гитарной струны. Когда в 1942 году шведский ученый Ханнес Альфвен, который впоследствии стал лауреатом Нобелевской премии, впервые предположил существование этих волн, сообщество физиков отнеслось к этому скептически. Но после того, как Альфвен прочитал лекцию в Чикагском университете, известный физик и преподаватель Энрико Ферми подошел к нему, чтобы обсудить теорию, признав, что такие волны могут существовать.

Термоядерный синтез

Одним из самых больших стимулов развития современной плазменной науки является перспектива управляемого термоядерного синтеза, при котором атомы сливаются вместе и выделяют интенсивные, но управляемые всплески энергии. Это обеспечило бы почти безграничный источник безопасной, экологически чистой энергии, но это не такая простая задача. Прежде чем на Земле произойдет такое слияние, плазма должна быть нагрета до более чем 100 миллионов градусов по Цельсию, что примерно в 10 раз горячее, чем центр Солнца. Но и это не самое сложное, поскольку ученым удалось достичь такой температуры в 1990-е годы. Однако горячая плазма очень нестабильна, поэтому ее трудно хранить и ею трудно управлять.

Попытки достичь управляемого термоядерного синтеза датируются началом 1950-х годов. В то время исследования проводились тайно Соединенными Штатами, а также Советским Союзом и Великобританией. В США, Принстонский Университет был точкой опоры для этого исследования. Там физик Лайман Спитцер начал проект Matterhorn, в рамках которого секретная группа ученых пыталась достичь управляемого термоядерного синтеза с помощью устройства под названием «стелларатор». У них не было компьютеров, и приходилось полагаться только на собственные расчеты. Хотя они не решили головоломку, они в конечном итоге разработали «энергетический принцип», который и сегодня остается мощным методом проверки идеальной стабильности плазмы.

Токамак

Между тем, ученые Советского Союза создали другое устройство - токамак. Эта машина, разработанная физиками Андреем Сахаровым и Игорем Таммом, использовала сильное магнитное поле, чтобы загнать горячую плазму в форму пончика. Токамак лучше удерживал плазму в горячем и стабильном состоянии, и по сей день большинство исследовательских программ по термоядерному синтезу опираются на дизайн токамака. Сегодня Китай, Европейский Союз, Индия, Япония, Корея, Россия и США объединились для строительства крупнейшего в мире реактора на токамаке, открытие которого ожидается в 2025 году. Тем не менее, в последние годы также возродился энтузиазм в отношении стеллараторов, и крупнейший в мире открылся в Германии в 2015 году. Инвестирование в оба метода, вероятно, дает нам лучший шанс в конечном итоге добиться успеха.

Плазма в околоземном пространстве

Плазма также связана с физикой пространства вокруг Земли, где вещества переносятся с помощью ветров, генерируемых в верхней атмосфере Солнца. Нам повезло, что магнитное поле Земли защищает нас от заряженных плазменных частиц и разрушительного излучения такого солнечного ветра, однако все наши спутники, космические корабли и астронавты подвергаются этому воздействию. Их способность выжить в этой враждебной среде зависит от понимания и приспособления к причудам плазмы.

В новой области, известной как «космическая погода», физика плазмы играет роль, аналогичную динамике жидкости в наземных атмосферных условиях. Есть такое явление, как магнитное пересоединение, при котором линии магнитного поля в плазме могут разрываться и пересоединяться, что приводит к быстрому высвобождению энергии. Считается, что этот процесс питает солнечные вспышки, хотя детальное понимание остается труднодостижимым. Но в будущем мы сможем предсказывать солнечные бури так же, как и плохую погоду на Земле.

В чем плазма помогает нам сегодня

Возможно, однажды физика плазмы даст нам представление о том, как впервые сформировались звезды, галактики и скопления галактик. Согласно стандартной космологической модели, плазма была распространена в ранней Вселенной, затем все стало остывать и заряженные электроны и протоны связывались вместе, чтобы сделать атомы водорода электрически нейтральными. Это состояние продолжалось до тех пор, пока не образовались первые звезды и черные дыры, которые начали излучать радиацию, после чего Вселенная «реионизировалась» и вернулась в состояние плазмы.

Сегодня благодаря плазме ученые могут находить черные дыры. Они настолько плотные, что практически не отражают свет, поэтому практически невидимы для прямого наблюдения. Однако черные дыры, как правило, окружены вращающимся диском плазменного вещества, который движется в пределах гравитационного притяжения черной дыры и испускает фотоны высокой энергии. Именно их ученые могут наблюдать в рентгеновском спектре.

Плазма все еще кажется нам довольно экзотичным состоянием вещества, но по мере того, как мы будем учиться использовать ее потенциал и расширять наш взгляд на космос, она в один прекрасны день может стать для нас такой же обычной, как лед и вода. А если мы когда-нибудь достигнем контролируемого ядерного синтеза, то без плазмы мы больше просто не сможем жить.

Плазмой называется сильно ионизован­ный газ, в котором концентрации положи­тельных и отрицательных зарядов практи­чески одинаковы. Различают высокотемпе­ратурную плазму, возникающую при сверхвысоких температурах, и газоразряд­ную плазму, возникающую при газовом разряде. Плазма характеризуется сте­пенью ионизации  - отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величины  говорят о слабо ( со­ставляет доли процента), умеренно (- несколько процентов) и полностью ( близко к 100 %) ионизованной плазме.

Заряженные частицы (электроны, ионы) газоразрядной плазмы, находясь в ускоряющем электрическом поле, обла­дают различной средней кинетической

энергией. Это означает, что температура Т е электронного газа одна, а ионного Т и - другая, причем Т е и . Несоответствие этих температур указывает на то, что газо­разрядная плазма является неравновес­ной, поэтому она называется также неизо­термической. Убыль числа заряженных частиц в процессе рекомбинации в газо­разрядной плазме восполняется ударной ионизацией электронами, ускоренными электрическим полем. Прекращение дейст­вия электрического поля приводит к исчез­новению газоразрядной плазмы.

Высокотемпературная плазма являет­ся равновесной, или изотермической, т. е. при определенной температуре убыль числа заряженных частиц восполняется в результате термической ионизации. В та­кой плазме соблюдается равенство сред­них кинетических энергий составляющих плазму различных частиц. В состоянии подобной плазмы находятся звезды, звезд­ные атмосферы, Солнце. Их температура достигает десятков миллионов градусов.

Условием существования плазмы яв­ляется некоторая минимальная плотность заряженных частиц, начиная с которой можно говорить о плазме как таковой. Эта плотность определяется в физике плазмы из неравенства L>>D, где L - линейный размер системы заряженных частиц, D - так называемый дебаевский радиус экра­нирования, представляющий собой то рас­стояние, на котором происходит экраниро­вание кулоновского поля любого заряда плазмы.

Плазма обладает следующими основ­ными свойствами: высокой степенью иони­зации газа, в пределе - полной иониза­цией; равенством нулю результирующего пространственного заряда (концентрация положительных и отрицательных частиц в плазме практически одинакова); боль­шой электропроводностью, причем ток в плазме создается в основном электрона­ми, как наиболее подвижными частицами; свечением; сильным взаимодействием с электрическим и магнитным полями; ко­лебаниями электронов в плазме с большой частотой (~=10 8 Гц), вызывающими об­щее вибрационное состояние плазмы; «коллективным» - одновременным взаи-

модействием громадного числа частиц (в обычных газах частицы взаимодейству­ют друг с другом попарно). Эти свойства определяют качественное своеобразие плазмы, позволяющее считать ее особым, четвертым, состоянием вещества.

Изучение физических свойств плазмы позволяет, с одной стороны, решать мно­гие проблемы астрофизики, поскольку в космическом пространстве плазма - наиболее распространенное состояние ве­щества, а с другой - открывает принци­пиальные возможности осуществления уп­равляемого термоядерного синтеза. Ос­новным объектом исследований по управ­ляемому термоядерному синтезу является высокотемпературная плазма (~=10 8 К) из дейтерия и трития (см. § 268).

Низкотемпературная плазма (< 10 5 К) применяется в газовых лазерах, в термоэлектронных преобразователях и магнитогидродинамических генераторах (МГД-генераторах) - установках для не­посредственного преобразования тепловой энергии в электрическую, в плазменных ракетных двигателях, весьма перспектив­ных для длительных космических поле­тов.

Низкотемпературная плазма, получае­мая в плазмотронах, используется для рез­ки и сварки металлов, для получения неко­торых химических соединений (например, галогенидов инертных газов), которые не удается получить другими способами, и т. д.

Контрольные вопросы

Какие опыты были поставлены для выяснения природы носителей электрического тока в метал­лах?

Каковы основные идеи теории Друде - Лоренца?

Сравните порядок средних скоростей теплового и упорядоченного движения электронов в ме­таллах (при условиях, близких к нормальным и приемлемых в электротехнике).

Почему тепловое движение электронов не может привести к возникновению электрического тока?

Выведите на основе классической теории электропроводности металлов дифференциальную форму законов Ома и Джоуля - Ленца.

Как классическая теория электропроводности металлов объясняет зависимость сопротивления металлов от температуры?

В чем заключаются трудности элементарной классической теории электропроводности ме­таллов? Каковы границы ее применения?

Что называется работой выхода электрона и чем она обусловлена? От чего она зави­сит?

Какие существуют разновидности эмиссионных явлений? Дайте их определения.

Объясните вольт-амперную характеристику для вакуумного диода.

Можно ли изменять силу тока насыщения вакуумного диода? Если да, то как?

Каким образом можно вырвать электроны из холодного катода? Как называется это явле­ние?

Дайте объяснение качественной зависимости коэффициента вторичной электронной эмиссии диэлектрика от энергии падающих электронов.

Охарактеризуйте процесс ионизации; рекомбинации.

В чем отличие самостоятельного газового разряда от несамостоятельного? Каковы условия, необходимые для его существования?

Может ли возникнуть ток насыщения при самостоятельном газовом разряде?

Охарактеризуйте типы самостоятельного газового разряда. В чем их особенности?

К какому типу газового разряда относится молния?

В чем отличие равновесной плазмы от неравновесной?

Приведите основные свойства плазмы. Каковы возможности ее применения?

Задачи

13.1. Концентрация электронов проводимости в металле равна 2,5 10 22 см -3 . Определить среднюю скорость их упорядоченного движения при плотности тока 1 А/мм 2 .

13.2. Работа выхода электрона из вольфрама составляет 4,5 эВ. Определить, во сколько раз увели­чится плотность тока насыщения при повышении температуры от 2000 до 2500 К. [В 290 раз]

13.3. Работа выхода электрона из металла равна 2,5 эВ. Определить скорость вылетающего из металла электрона, если он обладает энергией 10 -1 8 Дж.

13.4. Воздух между пластинами плоского конденсатора ионизируется рентгеновским излучением. Сила тока, текущего между пластинами, 10 мкА. Площадь каждой пластины конденсатора равна 200 см 2 , расстояние между ними 1 см, разность потенциалов 100 В. Подвижность поло­жительных ионов b + = 1,4 см 2 /(В с) к отрицательных b - = 1,9 см 2 /(В с); заряд каждого иона равен элементарному заряду. Определить концентрацию пар ионов между пластинами, если ток далек от насыщения.

13.5. Ток насыщения при несамостоятельном разряде равен 9,6 пА. Определить число пар ионов, создаваемых в 1 с внешним ионизатором.

* Это явление получило в древности на­звание огней святого Эльма.

* К. Рикке (1845-1915) - немецкий физик.

Слово "плазма" имеет много значений, в их числе и физический термин. Итак, что такое плазма в физике?

Плазма - это ионизированный газ, который образуют нейтральные молекулы и заряженные частицы. Этот газ является ионизированным - от оболочки его атомов отделен минимум один электрон. Отличительной особенностью данной среды можно назвать ее квазинейтральность. Квазинейтральность означает, что среди всех зарядов в единице объема плазмы число положительных равно числу отрицательных.

Мы знаем, что вещество может быть газообразным, жидким или твердым - и эти состояния, именуемые агрегатными, способны перетекать одно в другое. Так вот, плазма считается четвертым агрегатным состоянием, в котором может пребывать вещество.

Итак, плазму отличают два основных свойства - ионизированность и квазинейтральность. О других ее особенностях мы поговорим далее, а вначале обратим внимание на происхождение термина.

Плазма: история определения

Проводить исследования разрядов начал Отто фон Герике с 1972 года, однако в течение двух с половиной следующих столетий ученые не могли выявить особые свойства и отличительные черты ионизированного газа.

Автором термина "плазма" как физического и химического определения считают Ирвинга Лэнгмюра. Ученый проводил опыты с частично ионизированной плазмой. В 1923 он и другой американский физик Тонкс предложили сам термин.

Физика плазмы зародилась в период между 1922-1929 годами.

Слово "плазма" по происхождению греческое, означает пластичную вылепленную фигуру.

Что такое плазма: свойства, формы, классификация

Если вещество нагревать, по достижении определенного значения температуры оно станет газообразным. Если продолжить нагревание, то газ начнет распадаться на составляющие его атомы. Потом они превращаются в ионы: это и есть плазма.

Есть разные формы этого состояния вещества. Плазма проявляется в земных условиях в разрядах молний. Также она образует ионосферу - это слой в верхнем слое атмосферы. Ионосфера появляется под действием ультрафиолета и делает возможным передачу радиосигналов на дальние расстояния.

Во Вселенной плазмы намного больше. Барионное вещество Вселенной почти полностью находится в состоянии плазмы. Плазма образует звезды, включая Солнце. Другие формы плазмы, встречающиеся в космосе - межзвездные туманности, солнечный ветер (поток ионизированных частиц, идущий от Солнца).

В природе, помимо молний и ионосферы, плазма существует в форме таких интересных явлений, как огни Святого Эльма, Северное сияние.

Есть искусственная плазма - например, в люминисцентных и плазменных лампах, в электрических дугах дуговых ламп и т.д.

Классификация плазм

Плазмы бывают:

  • идеальные, неидеальные;
  • высоко- , низкотемпературные;
  • неравновесные и равновесные.

Плазма и газ: сравнение

Плазма и газ во многом схожи, однако есть существенные отличия в их свойствах. Например, по электрической проводимости газ и плазма различны - у газа низкие значения по данному параметру, у плазмы, напротив, высокие. Газ состоит из подобных частиц, плазма - из разных по свойствам - заряду, скорости движения и т.п.

Читайте также: