Чем отличается аналоговая телефонная связь от цифровой. Цифровой и аналоговый сигнал: в чем сходство и различие, достоинства и недостатки? Развитие концепции цифровой связи

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

Обычно нам нет дела до того, как работает телефонная линия (но только не тогда, когда приходится кричать изо всех сил в телефонную трубку: "Повторите пожалуйста, ничего не слышно!").

Телефонные компании предоставляют клиенту множество самых разных услуг. В прейскурантах этих услуг разобраться не так просто - что, собственно, предлагается, и сколько за какую услугу следует платить. В этой статье мы ни словом не обмолвимся о ценах, однако попытаемся выяснить, в чем различие между наиболее часто предлагаемыми продуктами и услугами в области телефонной связи.

АНАЛОГОВЫЕ ЛИНИИ, ЦИФРОВЫЕ ЛИНИИ

Во-первых, линии бывают аналоговые и цифровые. Аналоговый сигнал меняется непрерывным образом; он всегда имеет определенное значение, представляющее, например, громкость и высоту передаваемого голоса или цвет и яркость определенного участка изображения. Цифровые сигналы имеют только дискретные значения. Как правило, сигнал либо включен, либо выключен, либо он есть, либо его нет. Иными словами, его значение равно или 1 или 0.

Аналоговые телефонные линии используются в телефонии с незапамятных времен. Даже телефоны пятидесятилетней давности, скорее всего, удастся подключить к абонентскому шлейфу - линии между домашней телефонной розеткой и центральной телефонной станцией. (Центральная телефонная станция - это не сверкающий небоскреб в центре города; длина абонентского шлейфа в среднем не превышает 2,5 миль (четырех километров), так что "центральная телефонная станция", как правило, помещается в каком-нибудь невзрачном здании неподалеку.)

Во время телефонного разговора встроенный в телефонную трубку микрофон преобразует речь в аналоговый сигнал, передаваемый на центральную телефонную станцию, откуда он попадает либо на другой абонентский шлейф, либо на другие коммутационные устройства, если вызываемый номер находится вне зоны действия данной станции. При наборе номера телефонный аппарат генерирует передаваемые по тому же основному каналу сигналы (in-band signals), указывающие, кому предназначен данный вызов.

За время своего существования телефонные компании накопили большой опыт в передаче речи. Установлено, что для выполнения этой задачи в основном достаточен диапазон частот от 300 до 3100 Гц. Напомним, что аудиосистемы класса hi-fi способны воспроизводить звук без искажений в частотном диапазоне 20-20000 Гц, а значит, телефонного диапазона хватает обычно только для того, чтобы абонент мог узнать звонящего по голосу (для других применений этот диапазон с большой вероятностью окажется чересчур узок - для передачи музыки, например, телефонная связь совершенно не годится). Плавный спад амплитудно-частотной характеристики на высоких и низких частотах телефонные компании обеспечивают с помощью аналогового телефонного канала 4000 Гц.

Центральная телефонная станция, как правило, оцифровывает сигнал, предназначенный для дальнейшей передачи по телефонной сети. За исключением Джилбет Каунти (шт. Арканзас) и Рэт Форк (шт. Вайоминг), во всех американских телефонных сетях сигнал между центральными станциями передается в цифровом виде. Хотя во многих компаниях используются цифровые учрежденческие АТС и средства передачи данных, а все средства ISDN основаны на цифровой кодировке, абонентские шлейфы по-прежнему остаются "последним оплотом" аналоговой связи. Объясняется это тем, что большинство телефонов в частных домах не имеют средств оцифровки сигнала и не могут работать с линиями пропускной способностью свыше 4000 Гц.

НА ЧТО ХВАТАЕТ 4000 ГЦ?

Модем - это устройство, преобразующее цифровые сигналы компьютера в аналоговые сигналы с частотами, в пределах полосы пропускания телефонной линии. Максимальная пропускная способность канала напрямую связана с полосой пропускания. Точнее, величина пропускной способности (в битах/сек) определяется полосой пропускания и допуском на отношение сигнал/шум. В настоящее время максимальная пропускная способность модемов - 33,6 Кбит/с - уже близка к этому пределу. Пользователи модемов с пропускной способностью 28,8 Кбит/с хорошо знают, что зашумленные аналоговые линии редко обеспечивают их полную пропускную способность, которая часто оказывается куда ниже. Сжатие, кэширование и прочие увертки помогают несколько выправить ситуацию, и тем не менее мы скорее доживем до изобретения вечного двигателя, чем до появления модемов с пропускной способностью 50 или хотя бы 40 Кбит/с на обычных аналоговых линиях.

Телефонные компании решают обратную задачу - оцифровывают аналоговый сигнал. Для передачи получающегося цифрового сигнала используются каналы пропускной способностью 64 Кбит/с (это - мировой стандарт). Такой канал, именуемый DS0 (digital signal, нулевой уровень), является базовым кирпичиком, из которого строятся все прочие телефонные линии. Например, можно объединить (правильный термин - уплотнить) 24 канала DS0 в канал DS1. Арендуя линию T-1, пользователь фактически получает канал DS1. Подсчитывая суммарную пропускную способность DS1, надо помнить, что после каждых 192 информационных бит (то есть 8000 раз в секунду) передается один бит синхронизации: всего получается 1,544 Мбит/с (64000 умножить на 24 плюс 8000).

ВЫДЕЛЕННЫЕ ЛИНИИ, КОММУТИРУЕМЫЕ ЛИНИИ

Помимо линии Т-1 клиент может арендовать выделенные линии или пользоваться обычными коммутирующими линиями. Арендуя у телефонной компании канал T-1 или низкоскоростную линию передачи данных, например цифровую линию dataphone (dataphone digital service, DDS), абонент фактически берет напрокат прямое соединение и в результате становится единственным пользователем канала с пропускной способностью 1,544 Мбит/с (T-1) или 56 Кбит/с (низкоскоростная линия).

Хотя технология frame relay и предполагает коммутацию индивидуальных кадров, соответствующие услуги предлагаются пользователю в виде виртуальных каналов связи между фиксированными конечными точками. С точки зрения архитектуры сети, frame relay следует рассматривать, скорее, как выделенную, нежели как коммутируемую линию; немаловажен тот факт, что цена такой услуги при той же пропускной способности существенно ниже.

Коммутационные услуги (примером их может служить обслуживание обычного квартирного телефона) - это услуги, приобретаемые у телефонной компании. Абоненту по требованию предоставляется осуществляемое с помощью сети коммутаторов общего пользования соединение с любым узлом телефонной сети. В отличие от ситуации с выделенными линиями, плата в этом случае взимается за время соединения или реальный объем трафика и зависит большей частью от частоты и объема пользования сетью. Коммутационные услуги цифровой связи могут предоставляться на основе протоколов X.25, Switched 56, ISDN Basic Rate Interface (BRI), ISDN Primary Rate Interface (PRI), Switched Multimegabit Data Service (SMDS) и ATM. Некоторые организации, например университеты, железные дороги или муниципальные организации, создают частные сети с использованием собственных коммутаторов и арендованных, а порой даже своих собственных линий.

Если линия, полученная от телефонной компании, цифровая, то для обмена данными между телефонной сетью и оконечным оборудованием (этим термином телефонные компании обозначают такое оборудование, как компьютеры, факсимильные аппараты, видеотелефоны и цифровые телефонные аппараты) не требуется выполнять преобразование цифровых сигналов в аналоговые, а следовательно, необходимость в модеме отпадает. Тем не менее и в этом случае пользование телефонной сетью накладывает определенные требования на абонента. В частности, следует обеспечивать корректную концевую заделку абонентского шлейфа, правильную передачу трафика и поддержку диагностики, выполняемой телефонной компанией.

Линия, поддерживающая протокол ISDN BRI, должна быть подсоединена к устройству под названием NT1 (network termination 1). Помимо концевой заделки линии и поддержки диагностических процедур устройство NT1 осуществляет согласование двухпроводного абонентского шлейфа с четырехпроводной системой цифрового оконечного оборудования. При использовании арендованных цифровых линий T-1 или DDS, а также услуг цифровой связи в качестве нагрузки линии следует использовать модуль обслуживания канала (channel service unit, CSU). CSU работает как терминатор, обеспечивает корректную нагрузку линии и отрабатывает команды диагностики. Оконечное оборудование, имеющееся у клиента, взаимодействует с модулем обслуживания данных (data service unit, DSU), который преобразует цифровые сигналы к стандартному виду и передает их на CSU. Конструктивно CSU и DSU часто объединяются в один модуль под названием CSU/DSU. DSU можно встроить в маршрутизатор или мультиплексор. Таким образом, и в этом случае (хотя модемы здесь не нужны) потребуется установка определенных интерфейсных устройств.

НОСИТЕЛИ ДЛЯ ТЕЛЕФОННОЙ СВЯЗИ

Большинство аналоговых абонентских шлейфов лишь при очень благоприятных условиях могут обеспечить пропускную способность в 33,6 Кбит/с. С другой стороны, та же самая витая пара, соединяющая офис с центральной телефонной станцией, вполне может использоваться для работы с ISDN BRI, что дает пропускную способность по данным 128 Кбит/с и еще 16 Кбит/с для управления и настройки. В чем тут дело? Сигнал, передаваемый по аналоговым телефонным лииниям, подвергается фильтрации для подавления всех частот свыше 4 КГц. При использовании цифровых линий такой фильтрации не требуется, поэтому полоса пропускания витой пары оказывается существенно шире, а следовательно, повышается и пропускная способность.

Арендуемые линии с пропускной способностью 56 и 64 Кбит/с представляют собой двухпроводные или четырехпроводные цифровые линии (в последнем случае одна пара используется для передачи, а другая - для приема). Эти же линии пригодны в качестве носителя для предоставления услуг цифровой связи, например frame relay или Switched 56. В качестве носителя для T-1, а также ISDN PRI и frame relay часто применяются четырехпроводные линии или даже оптические кабели. Линии T-3 иногда представляют собой коаксиальный кабель, но чаще они все-таки выполняются на основе оптического.

Хотя ISDN по-прежнему и привлекает самое широкое внимание как средство высокоскоростной передачи сигнала на большие расстояния, в последнее время появились более новые средства связи для "последней мили" (т.е. абонентского шлейфа). Компании PairGain и AT&T Paradyne предлагают продукты на базе разработанной компанией Bellcore технологии высокоскоростного цифрового абонентского шлейфа (high bit-rate digital subscriber loop, HDSL). Данные продукты позволяют уравнять возможности всех имеющихся абонентских шлейфов; установив устройства HDSL на обоих концах линии, можно получить пропускную способность DS1 (1,544 Мбит/с) практически на всех существующих абонентских шлейфах. (HDSL длиной до 3,7 км может использоваться на абонентских шлейфах без повторителей в случае стандартных проводов 24 калибра. Для работы обычных линий T-1 необходимо ставить повторители через каждые километр-полтора). Альтернативой HDSL в достижении пропускной способности DS1 на "последней миле" является либо использование оптического кабеля (что весьма накладно), либо установка нескольких повторителей на каждой линии (это не так дорого, как оптоволоконная техника, но все равно недешево). Кроме того, в данном случае существенно возрастают расходы телефонной компании, а следовательно и клиента, на поддержание линии в рабочем состоянии.

Но даже и HDSL - не последнее слово техники в области увеличения пропускной способности на "последней миле". Ожидается, что наследник HDSL, технология асимметричного цифрового абонентского шлейфа (asymmetrical digital subscriber line, ASDL), сможет обеспечить пропускную способность 6 Мбит/с в одном направлении; пропускная способность другого существенно ниже - что-нибудь около 64 Кбит/с. В идеале или, как минимум, при отсутствии чьей-либо монополии - если считать, что стоимость услуги для клиента примерно соответствует ее себестоимости для телефонной компании - большая доля клиентов могла бы пользоваться ISDN PRI (или другими услугами на базе T-1) по цене, сравнимой с теперешней ценой ISDN BRI.

Однако сегодня сторонникам ISDN, скорее всего, беспокоиться не о чем; в большинстве случаев телефонные компании предпочтут увеличить пропускную способность линий и положить всю прибыль себе в карман без снижения стоимости услуг для клиента. Вовсе не очевидно, что тарифы на услуги должны быть основаны на здравом смысле.

Таблица 1. Типы телефонных услуг

Тип линии

Услуга

Вид коммутации

Носитель абонентского шлейфа

Аналоговая линия

Коммутация линий

Двухпроводная витая пара

DS0 (64 Кбит/с)

DDS (арендуемая линия)

Выделенная линия

PVC с коммутацией

Двух- или четырехпроводная витая пара

Коммутация

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двухпроводная витая пара

Несколько DS0

(от 64 Кбит/с до

1536 Мбит/с с

Шагом 64 Кбит/с)

Выделенная линия

Двух- или четырехпроводная витая пара

PVC с коммутацией

Двух- или четырехпроводная витая пара

(1544 Мбит/с)

(24 линии DS0)

Арендуемая линия T-1

Выделенная линия

PVC с коммутацией

Четырехпроводная витая пара или оптоволокно

Коммутация пакетов

Четырехпроводная витая пара или оптоволокно

Коммутация линий

Четырехпроводная витая пара или оптоволокно

(44736 Мбит/с)

(28 линий DS1,

672 линии DS0)

Сотовая коммутация

Коммутация пакетов

Коаксиальный кабель или оптоволокно

Со Стивом Штайнке можно связаться через Internet по адресу:

Подобные документы

    Основные характеристики непрерывных аналоговых сигналов. Свойства и передача аналогового сигнала. Применение аналоговых сигналов в телефонии, радиовещании, телевидении. Отличия детерминированных, периодических, синусоидальных и прямоугольных сигналов.

    презентация, добавлен 17.12.2016

    Прямой цифровой синтез, его схема, область применения, значение. Параметры цифро-аналоговых преобразователей: статистические (разрешающая способность, погрешность полной шкалы и смещения нуля, нелинейность) и динамические. Шумы и причины их появления.

    реферат, добавлен 14.02.2009

    Понятие, сущность и характеристика особенностей аналоговых коммутаторов. Статические характеристики аналоговых коммутаторов. Особенности электронных коммутаторов и их описание. Особенности коммутатора на полевых транзисторах и аналоговых мультиплексоров.

    реферат, добавлен 14.02.2009

    Анализ истории развития средств связи. Характеристика средств персональной радиосвязи. Изучение принципов работы систем персонального вызова и сотовой подвижной связи. Анализ функционирования аналоговых систем и цифровых стандартов сотовой связи.

    учебное пособие, добавлен 18.09.2017

    Разновидности линий связи, понятие канала связи и классификация каналов передачи данных. Диапазоны частот, передаваемых основными типами направляющих систем, основные характеристики аналоговых сигналов. Развитие и использование цифровых систем передачи.

    презентация, добавлен 19.10.2014

    Исследование схем аналоговых и дискретно-аналоговых перестраиваемых интеграторов, особенности их построения и принципы работы. Определение уникальности каждой схемы, как по схемотехническому исполнению, так и по способу перестройки, проведение анализа.

    статья, добавлен 28.07.2017

    Классификация и описание видов телефонного соединения. Основы общегосударственной системы автоматизированной телефонной связи. Схема построения, структура разных видов абонентской сети городских аналоговых телефонных станций. Способы их связи между собой.

    презентация, добавлен 09.03.2013

    Исследование аналоговых и цифровых систем передачи. Распространение сигналов по линиям связи в виде непрерывно меняющихся синусоидальных электромагнитных волн, которые характеризуются частотой, фазой и амплитудой. Изучение канала двустороннего действия.

    презентация, добавлен 03.01.2018

    Качественные показатели и характеристики аналоговых электронных устройств. Построение усилительного каскада на электронной лампе и полевых транзисторах. Обратная связь в аналоговых устройствах. Усилительные каскады с различными видами обратной связи.

    курс лекций, добавлен 23.05.2013

    Способы формирования выходного напряжения для цифро-аналоговых преобразователей. Параллельный цифро-аналоговый преобразователь на переключаемых конденсаторах и преобразователь с суммированием напряжений, их особенности и интерфейсы преобразователей.

Отличие аналоговой и цифровой связи.
Имея дело с радиосвязью, очень часто приходится сталкиваться с такими терминами, как «аналоговый сигнал» и «цифровой сигнал» . Для специалистов в этих словах нет никакой тайны, но для людей несведущих разница между «цифрой» и «аналогом» может быть совсем неведомой. А между тем разница есть и весьма существенная.
Итак. Радиосвязь это всегда передача информации (речевой, СМС, телесигнализации) между двумя абонентами источником сигнала передатчиком (Радиостанцией, репитером, базовой станцией) и приемником.
Когда мы говорим о сигнале, то обычно подразумеваем электромагнитные колебания, наводящие ЭДС и вызывающие колебания тока в антенне приемника. Далее приемное устройство – переводит полученные колебания обратно в сигнал звуковой частоты и выводит на динамик.
В любом случае сигнал передатчика можно представить как в цифровой, так и в аналоговой форме. Ведь, к примеру, сам по себе звук – это аналоговый сигнал. На радиостанции звук, воспринимаемый микрофоном, преобразуется в уже упоминавшиеся электромагнитные колебания. Чем выше частота звука – тем выше частота колебаний на выходе, а чем громче говорит диктор – тем больше амплитуда.
Получившиеся электромагнитные колебания, или волны, распространяются в пространстве с помощью передаточной антенны. Чтобы эфир не забивался низкочастотными помехами, и чтобы у разных радиостанций была возможность работать параллельно, не мешая друг другу, колебания, получившиеся от воздействия звука, суммируют, то есть «накладывают» на другие колебания, имеющие постоянную частоту. Последнюю частоту принято называть «несущей», и именно на ее восприятие мы настраиваем свой радиоприемник, чтобы «поймать» аналоговый сигнал радиостанции.
В приемнике происходит обратный процесс: несущая частота отделяется, а электромагнитные колебания, полученные антенной, преобразуются в колебания звука, и из динамика слышится информация которую хотел сообщить передавший сообщение.
В процессе передачи звукового сигнала от радиостанции к приемнику могут возникнуть сторонние помехи, частота и амплитуда могут измениться, что, конечно же, отразится на звуках, издаваемых радиоприемником. Наконец, и сами передатчик и приемник во время преобразования сигнала вносят некоторую погрешность. Поэтому звук, воспроизводимый аналоговым радиоприемником, всегда имеет некоторые искажения. Голос может вполне воспроизводиться, несмотря на изменения, но фоном будет шипение или даже какие-то хрипы, вызванные помехами. Чем менее уверенным будет прием, тем громче и отчетливее будут эти посторонние шумовые эффекты.

Вдобавок эфирный аналоговый сигнал имеет очень слабую степень защиты от постороннего доступа. Для общественных радиостанций это, конечно, не имеет никакого значения. Но во время пользования первыми мобильными телефонами был один неприятный момент, связанный с тем, что почти любой посторонний радиоприемник мог быть легко настроен на нужную волну для подслушивания вашего телефонного разговора.

Для защиты от этого используют так называемое «тонирование» сигнала или по другому система CTCSS (Continuous Tone-Coded Squelch System) система шумоподавления, кодированная непрерывным тоном или система идентификации сигнала «свой/чужой», предназначенная разделять пользователей, работающих в одном частотном диапазоне, на группы. Пользователи (корреспонденты) из одной группы могут слышать друг друга благодаря идентификационному коду. Объясняя доступно, принцип действия данной системы таков. Вместе с передаваемой информацией в эфир отправляют также дополнительный сигнал (или по другому тон). Приемник, помимо несущей, распознает при соответствующей настойке этот тон и принимает сигнал. Если же в рации –приемнике тон не настроен, то приема сигнала не происходит. Стандартов шифрования существует достаточное большое количество отличающаяся для различных производителей.
Такие недостатки есть у аналогового эфирного вещания. Из-за них, к примеру, телевидение в относительно скором времени обещает стать полностью цифровым.

Цифровая связь и вещания считаются более защищенными от помех и от внешних воздействий. Все дело в том, что при использовании «цифры» аналоговый сигнал с микрофона на передающей станции зашифровывается в цифровой код. Нет, конечно, в окружающее пространство не распространяется поток цифр и чисел. Просто звуку определенной частоты и громкости присваивается код из радиоимпульсов. Продолжительность и частота импульсов задана заранее – она одна и у передатчика, и у приемника. Наличие импульса соответствует единице, отсутствие – нулю. Поэтому такая связь и получила название «цифровая».
Устройство, преобразующее аналоговый сигнал в цифровой код, называется аналого-цифровым преобразователем (АЦП) . А устройство, установленное в приемнике, и преобразующее код в аналоговый сигнал, соответствующий голосу вашего знакомого в динамике сотового телефона стандарта GSM, называется цифро-аналоговый преобразователь (ЦАП).
Во время передачи цифрового сигнала ошибки и искажения практически исключены. Если импульс станет немного сильнее, продолжительнее, или наоборот, то он все равно будет распознан системой как единица. А нуль останется нулем, даже если на его месте возникнет какой-то случайный слабый сигнал. Для АЦП и ЦАП не существует других значений, как 0,2 или 0,9 – только нуль и единица. Поэтому помехи на цифровую связь и вещание почти не оказывают влияния.
Более того, «цифра» является и более защищенной от постороннего доступа. Ведь, чтобы ЦАП устройства смог расшифровать сигнал, необходимо, чтобы он «знал» код расшифровки. АЦП вместе с сигналом может передавать и цифровой адрес устройства, выбранного в качестве приемника. Таким образом, даже если радиосигнал и будет перехвачен, он не сможет быть распознан из-за отсутствия как минимум части кода. Это особенно актуально для связи.
Итак, отличия цифрового и аналогового сигналов :
1) Аналоговый сигнал может быть искажен помехами, а цифровой сигнал может быть или забит помехами совсем, или приходить без искажений. Цифровой сигнал или точно есть, или полностью отсутствует (или нуль, или единица).
2) Аналоговый сигнал доступен для восприятия всеми устройствами, работающими по тому же принципу, что и передатчик. Цифровой сигнал надежно защищен кодом, его трудно перехватить, если вам он не предназначается.

Помимо чисто аналоговых и чисто цифровых станций, существуют и радиостанции поддерживающие как аналоговый так и цифровой режим. Они предназначены для перехода с аналоговой на цифровую связь.
Итак имея в распоряжении парк аналоговых радиостанций, вы можете постепенно перейти на цифровой стандарт связи.
Например, изначально вы строили систему связи на Радиостанциях Байкал 30.
Напомню, что это аналоговая станция с 16 каналами.

Но идет время, и станция перестает устраивать Вас, как пользователя. Да, она надежная, да мощная, да с хорошим аккумулятором до 2600 мА/ч. Но при расширении парка радиостанций более чем на 100 человек, а особенно при работе в группах её 16 каналов начинает не хватать.
Вам совершенно не обязательно сразу бежать и покупать радиостанции цифрового стандарта. Большинство производителей, намеренно вводят модель с наличием аналогового режима передачи.
То есть вы можете поэтапно переходить на например Байкал -501 или Vertex-EVX531 сохраняя существующую систему связи в рабочем состоянии.

Плюсы такого перехода неоспоримы.
Вы получаете станцию работающую
1) дольше (в цифровом режиме меньше потребление.)
2) Имеющую большее количество функций (групповой вызов, одинокий работник)
3) 32 канала памяти.
То есть вы фактически создаете изначально 2 базы каналов. Под новые закупленные станции (цифровые каналы) и базу каналов содействия с существующими станциями (аналоговые каналы). Постепенно по мере закупки оборудования вы будете сокращать парк радиостанций второго банка и увеличивать – первого.
В конечном итоге вы достигнете поставленной задачи – перевести полностью вашу базу на цифровой стандарт связи.
Хорошим дополнением и расширением к любой базе может послужить цифровой ретранслятор Yaesu Fusion DR-1


Это двухдиапазонный (144/430MHz) ретранслятор, который поддерживает аналоговую FM связь, а также одновременно цифровой протокол System Fusion в пределах частотного диапазона 12.5кГц. Мы уверены, что внедрение новейшей DR-1X станет рассветом нашей новой и впечатляющей многофункциональной системы System Fusion.
Одной из ключевых возможностей System Fusion является функция AMS (автоматический выбор режима) , которая мгновенно распознает принимается ли сигнал в режиме V/D, режиме голосовой связи или режиме данных FR аналоговом FM или цифровом C4FM, и автоматически переключается на соответствующий. Таким образом, благодаря нашим цифровым трансиверам FT1DR и FTM-400DR System Fusion ,чтобы поддерживать связь с аналоговыми FM радиостанциями больше нет необходимости каждый раз вручную переключать режимы,.
На репитере DR-1X, AMS можно настроить так, чтобы входящий цифровой C4FM сигнал преобразовывался в аналоговый FM и ретранслировался, таким образом позволяя поддерживать связь между цифровым и аналоговым трансиверами. AMS также можно настроить на автоматическую ретрансляцию входящего режима на выход, позволяя цифровым и аналоговым пользователям совместно использовать один ретранслятор.
До сих пор, FM ретрансляторы использовались только для традиционной FM связи, а цифровые ретрансляторы только для цифровой. Однако, теперь просто заменив обычный аналоговый FM репитер на DR-1X, вы можете продолжать пользоваться обычной FM связью, а также использовать ретранслятор для более продвинутой цифровой радиосвязи System Fusion . Другие периферийные устройства, такие как дуплексер и усилитель и т.д. можно продолжать использоваться как обычно.

Более подробные характеристики оборудование можно увидеть на сайте в разделе продукция

Исторически первой попыткой передать цифру считают телеграф Шиллинга (1832). Постепенно изобретатель, пытаясь снизить число соединительных линий, внедрил методику кодирования печатных знаков двумя состояниями. Аналогично работает азбука Морзе (1840).

Цифровая связь – род электросвязи, использующий дискретные сигналы, как правило, двоичной системы счисления.

История кодирования информации с точки зрения связи

Считаем излишним упоминать опостылевший читателям дым костра пещерных людей. Семафор Шаппа столь же никудышный пример. И тут Википедия, сообщила: Лейбниц, основоположник двоичного счета, интересовался китайской Книгой перемен… Глубочайшие древние знания сегодня недооценивается брезгливо отбрасывающими непонятое неучами. Пойдём узкой тропой.

Древние жители Малайзии использовали комбинированную двоично-десятичную систему счисления. Ритуальные барабаны Африки формировали кодовый сигнал, служащий различным целям.

Древний Египет

Википедия не даст соврать – египтяне хорошо умели считать. Дробей было даже два вида:

  1. Египетские получили собственное название. Бытовала запись числа конечной суммой простых дробей. Математики доказали: каждое положительное рациональное число раскладывается указанным образом. Методику переняли многие древние цивилизации.
  2. Глаз Гора (напоминает Око Ра), знак даёт защиту, королевскую власть, отличное здоровье. Современные исследователи дали изображению собственные названия, отметив схожесть отдельных элементов с цифрами.

Глаза Гора

Гор считается сыном Осириса и Исиды. Традиционно наделяют головой сокола. Правый глаз древних изображений олицетворяет бога солнца Ра, левый – бога мудрости Тота. Оба являются зеркальными отражениями друг друга. Иероглифы, обозначающие глаз, имеют смысл: делатель; человек, занимающийся трудом. Различные участки изображения представляли единицу, делённую на первые 6 степеней двойки, напоминая современный бинарный код:

  1. 1/2. Правая сторона глаза.
  2. 1/4. Глазное яблоко.
  3. 1/8. Бровь.
  4. 1/16. Левая сторона.
  5. 1/32. Изгиб, завиток, имитирующий морщину ниже глаза.
  6. 1/64. След слезы.

В 2003 году Джим Риттер окончательно доказал несостоятельность теории сходства элементов глаз с иероглифами, обозначающими цифры. Однако терминология прижилась, продолжает активно применяться учёными-математиками. Египтяне применяли делители степень двоек, подсчитывая урожай, объёмы жидкостей. Первые следы употребления датируются 2400 г. до Р.Х. Порядок действий при умножении задействует алгоритм, включающий двоичное представление второго числа.

Книга перемен

Документ, датированный IX в. до Р.Х., демонстрирует систему гаданий в четверичной системе счисления. Базовая система образована:

  1. Двойственной природой сил: инь, ян.
  2. Восемью триграммами Будуа (общее количество: третья степень числа два).
  3. 64 гексаграммами Люшисыгуа (общее количество: шестая степень числа два).

Шао Йонг выстроил гексаграммы согласно порядку возрастания, создав набор чисел. Хотя никогда не пытался использовать картинки, выполняя математические вычисления.

Индия

Древний учёный Пингала (2 в. до Р.Х.) разработал ритмическую систему стихосложения, напоминающую азбуку Морзе – длинные/короткие слоги. Трактат Чандас-шастра стал обрядовой классикой, сопутствующей Ведам. Информация описана матрицей, помогающей снабдить стихотворение неповторимым ритмом. Современный двоичный аналог отсутствует.

Средневековая двоичная система

В 1605 году Фрэнсис Бэкон рассматривал систему двоичного кодирования букв, предлагая визуальную систему распознавания шифрованной информации. Попутно упоминал возможность использования:

  1. Колоколов.
  2. Огней.
  3. Факелов.
  4. Мушкетных залпов.
  5. Трубных мелодий.

Джон Непер (1617) описал систему двоичных вычислений. Томас Харриот интересовался вопросом, поленившись опубликовать результаты. Позже бумаги были найдены среди рукописей учёного. Первой тематической рукописью считают работу Хуана Карамуэля и Лобковица (1670). Раздел Ru binara arithmetica вводит понятие двоичной системы:

  • 1 = а.
  • 0 = о.

Попутно богослов упоминает возможность использования основ счисления выше десятичной, предлагая заменять недостающие цифры буквами. 32 = аооо. Поныне используется современными вычислительными системами. Учёный пытался показать: двоичное счисление подсказано природой. Лобковиц опирался на музыкальный строй инструментов. Вплетая витиеватые представления философии, указал небесную подоплёку применения троичной системы. Четыре стороны света увязал на четверичную.

Похожими тропами двигались мысли Харриота, чьи работы составляли тайну для современников.

Лейбниц

Лейбниц заинтересовался проблемой в 1979 году. Первому знакомству с китайским раритетом обязан члену миссионерской общины Иоакиму Буве, посещавшему (1685) страну шелка лично. Гексаграммы подтвердили универсальность собственных христианских мировоззрений Лейбница. Проиллюстрируем не очевидный ход мысли учёного:

  1. Христос создан из ничего (Ex nihilo) велением Бога. Противопоставляясь другим людям, созданным из материи. «Нелегко донести язычникам концепцию творения из ничего посредством силы Бога. Теперь каждый может показаться замечательную систему счисления, где мир представлен число 1, ничто – числом 0.» Цитата письма герцогу Брауншвейгу с приложенными гексаграммами.
  2. Связка Бытие/Ничто формирует дуалистическую систему.
  3. Двоичный счёт является даром небес.

Двадцать пять лет спустя вышел очерк Объяснение двоичной арифметики, использующей числа 0 и 1, дополненное объяснением полезности и связи с китайскими фигурами Фу Си. Семантическое представление значений идентично общепринятому современному. Учёный потрудился выстроить гексаграммы (см. выше), получив мощное средство производства вычислений.

Двоичная арифметика

Джордж Буль (1854) создал знаменитую логику, получившую волей сообщества математиков уникальное название. Логика стала основой конструирования современных цифровых приборов. Клод Шеннон (1937, Массачусетский технологический институт) сформулировал ключевые тезисы реализации электронных вычислителей, использующих переключатели, реле. К ноябрю Джордж Штибиц реализовал концепцию, построив Модель К. Литера обозначала кухню, где трудился изобретатель.

США

Первый вычислитель умел складывать цифры. Лаборатории Белла организовали исследовательскую программу, поставив главным Штибица. Оконченная 8 января 1940 года машина использовала комплексные числа. Демонстрируя детище конференции Американского математического общества на базе колледжа Дартмуна, изобретатель подавал команды посредством телефонной линии, используя телетайп. Продемонстрировав прототип современной клавиатуры – устройства ввода. Демонстрацию посетили лично:

  1. Джон фон Ньюманн.
  2. Норберт Винер.
  3. Джон Моучли.

Германия

Параллельно компьютер Z1 (альтернативное имя V1 – экспериментальная модель) построил Конрад Цузе. Двоичный вычислитель считывал простейшие инструкции с перфорированной плёнки. Изделие 1935-1936 г.г. считают первым программируемым устройством современной истории человечества. Разработка полностью оплачена частными фондами. Компьютер весом 1 тонну полностью уничтожен бомбардировкой Берлина 1943 года войсками союзников. Рядом сгорели чертежи…

Это интересно! Оригинальное имя V1 повторяло название знаменитых Фау-1 (самолётов-снарядов). Поэтому современной литературой употребляется Z1.

  1. Контрольный блок – аналог процессора.
  2. Математическую логику с плавающей запятой.
  3. Память (читаемая/исполняемая) объёмом 64 слова.
  4. Устройства ввода-вывода, включая считыватель 35 мм перфоленты.

Контрольный блок давал возможность наблюдать последовательность исполняемых операций. Вычислительный блок оперировал 22-битными числами с плавающей запятой. Логические операции расширяли функциональность. Первоначальный набор содержал 9 инструкций, занимающих 1-20 «процессорных» циклов.

Входные/выходные данные десятичные.

История развития цифровой связи

Исторически первой стала амплитудная модуляция сигнала, внедрённая Поповым за неимением выбора. Частотная запатентована 26 декабря 1933 года Эдвином Армстронгом. Отличается более широкой полосой частот, занимаемых передаваемым сигналом. Цифровой сигнал использует обе методики. Отличие описывается способом представления информации:

  1. Величина физического мира аналогового характера становится цифрой двоичной системы счисления.
  2. Символы 0, 1 кодируются установленным образом.
  3. Приёмная сторона расшифровывает послание.

Исторически первым устройством, применяющим кодирование называют телеграф Шиллинга (1832) – реализацию идеи Андрэ-Мари Ампера. Некорректно называть связь цифровой, потому что буквы также являются объектами дискретными. Отсутствует факт преобразования величин.

Мультиплексирование

Необходимость нарезать сигнал вызвана желанием телеграфистов использовать одну линию передачи. Первый трансатлантический кабель стоил недёшево. Немедля начали канал сдваивать, учетверять. Наука дискретизации шагает параллельно первым потугам моряков утопить кабель. Американский изобретатель Мосес Фармер предложил (1853) мультиплексирование с временным делением абонентов. Несколько передатчиков смогли использовать одну линию.

Двадцать лет спустя Эмиль Бодо построил машину автоматического мультиплексирования телеграфов Хагис. Долгое время положение дел устраивало общественность. Отсутствие элементной базы стопорило работы. В 1903 году Майнер создал электромеханический коммутатор временного мультиплексирования телеграфов. Последовательно технологию транспонировали на телефонные линии. Частота нарезки составляла 3,5-4 Гц, оставляя желать лучшего.

Кабельная система передачи изображений Бартлейна (1920) посылала оцифрованные рисунки принимающему факсу на другой стороне Атлантического океана. Применение бинарной арифметики снижало время передачи, достигая показателя 3 часа. Изначально производилась кодировка пятью оттенками серого. Постепенно число повышалось, достигнув (1929) пятнадцати. Имя технологии является производным двух создателей концепции:

  1. Гарри Бартоломью.
  2. Майнхард МкФарлейн.

Идею перенял Пол Рэйни, запатентовавший факсимильную машину, производящую оцифровку изображения 5-битным кодом посредством опто-механического конвертера. Попытка промышленного выпуска провалилась. Британского инженера Алека Ривса считают основоположником оцифровка голосовых сообщений. Теоретически рассмотрев вопрос, изобретатель подал заявку французскому бюро (по месту основной работы). Война подзатянула решение комиссии. Положительный ответ принёс 1943 год.

Зелёный шершень

Историки затрудняются указать первый факт установления цифровой связи, запутанный секретами Второй мировой войны. Шифровальное оборудование SIGSLAY радовало союзников непонятными врагам передачами. Википедия однозначно называет альянс пионерами. Техника использовала кодово-импульсную модуляцию. Находятся энтузиасты, приписывающие роль первопроходца Попову. Полагаем, несостоятельность трактовки очевидна.

Это интересно! Прототип первого цифрового связного оборудования назвали программой Зелёный шершень. Передатчик похоже гудел, кодируя информацию. Зелёный шершень помог провести 3000 конференций.

Немецкие шпионы прослушивали каналы связных скрамблеров А-3, построенных Вестерн Электрик. Иногда глушили трафик. Враждующие стороны постоянно взламывали взаимную защиту. Злоумышленникам помогал анализатор спектра. Сигсалли маскировал посылку, спрятанную предварительно вокодером, псевдошумовым сигналом. Разработчики заложили частоту дискретизации 25 Гц. Изобретатели продемонстрировали ряд новых технологий, реализуя схему:

  1. Выборку десяти каналов линии диапазона 250..2950 Гц шифрации.
  2. Оцифровку согласно правилу наличия, отсутствие фонации.
  3. Наличие характеризовалось высотой тона, скорость изменения ниже 25 Гц.

Выборки нарезали частотой 50 Гц, амплитуду конвертировали шестью уровнями (числом 0..5). Шкала дискретизации нелинейная с большими пролётами на сильных сигналах. Разработчики использовали данные физиологов, констатирующих: оттенки голоса закладываются не всеми колебаниями голосовых связок одинаково. Звук с фонацией кодировали парой 6-уровневых чисел, добиваясь получения 36 уровней.

Криптографический ключ образован серией случайных значений 6-уровневых чисел. Код вычитался из выборки голосовых отсчётов по модулю 6, скрывая содержимое. Несущая подвергалась частотной манипуляции (резкое изменение значения несущей). Приёмник принимал набор значений, образовывал выборку сообразно принятой системе кодирования. Затем сигнал расшифровывали, производя сложение по модулю 6. Вокодер довершал цепочку преобразований.

  1. Белым шумом заполнялись промежутки, лишённые фонации.
  2. Генератор формировал сетку гармоник, частота которых контролировалась высотой тона (см. выше).
  3. Отдельный переключал тонации контролировал тип звучания.
  4. Дело довершал регулируемый усилитель.

Шумовые комбинации шифрования ключа изначально записали с большого ртутного выпрямителя на фонограф. Информацию разослали пользователям системы. Терминал, сформированный 40 блоками, весил 50 тонн, потребляя 30 кВт энергии. Комнату приходилось охлаждать воздухом. Первый комплект занял помещение здания Пентагона. Президент Франклин Рузвельт круглосуточно имел возможность общаться, выслушивая планы премьер-министра Уинстона Черчилля, имевшего собственный экземпляр под Оксфорд Стрит. 15 июля 1943 года состоялась первая пресс-конференция союзников. Стороны установили необходимое количество наборов, включая один, занявший борт флагмана Генерал Дуглас МакАртур.

Достижения

  1. Первая секретная радиосвязь.
  2. Первая дискретизированная передача данных.
  3. Внедрение концепции кодово-импульсного радиоканала.
  4. Использование компадирования.
  5. Первая радиопередача многоуровневой частотной манипуляции.
  6. Первая технология компрессии спектра речи.
  7. Внедрение методики частотного деления каналов при помощи манипуляции.

Развитие концепции цифровой связи

Канадская военно-морская система DATAR (1949) стала транслировать информацию. Формирование считают первым примером военной информационной системы, реализуя концепцию единого командного пункта. Канада хорошо помнила 1943 год, когда получила возможность координировать действия морских сил союзников. Командование задумало упростить процесс. Круглый планшет, напоминающий экран радиолокационной станции, показывал положение участников баталии. Проект затрагивал морской флот, попутно специалисты отметили возможный охват всех родов войск.

Демонстрация 1953 года провалилась, заставив ВВС США заняться разработкой SAGE. Центральная система управляла действиями NORAD, отражая возможные атаки воздушного флота противника. Обстановка, сдобренная изрядной долей дисплеев, компьютеров, стала неотъемлемой частью холодной войны. Основу производственной мощности составил супервычислитель AN/FSQ-7, снабдивший процессорным временем командные центры, занимавший 22000 квадратных футов пола.

Стоимость, исчисляемая миллиардами долларов, перекрыла затраты Манхэттанского проекта. Тест Небесного щита показал перехват 25% бомбардировщиков. Сегодня управляющая роль получена микрокомпьютерам, дублирующим функции машинных залов. Ограниченность технологии объяснялась необходимостью использования вакуумных электрических приборов. Военные отдали часть технологий промышленности. 24-канальные машины 1953 года были далеки океану, военной авиации. Истинное призвание техники RCA – посылать звуковые сообщения на Брод Стрит (Нью-Йорк), обеспечивать функционирование линий Роки Пойнт – Лонг Айленд.

Цифровая революция

Подложка давно была готова. Основы, кропотливо развиваемые учёными, заложил Чарльз Бэббидж. Технологии связи развивали телеграфисты. США выделили для цифровых проектов бюджет. Статья Клода Шеннона Математическая теории связи (1948) стала путеводной звездой отрасли. Промышленность ринулась оцифровывать аналоговые сигналы. Копии стали идентичны оригиналом, перестали стариться. Цифровая информация без потерь преодолевала кабель, эфир.

1947 год принёс миру полупроводниковый триод. Военные мигом оценили предоставляемые возможности. Вероятно засекреченные ранее сведения специально обнародовали, оценив потенциал гражданской промышленности США. Параллельно Великий рывок совершила Япония, порастеряв остатки феодального строя. 50-60-е годы основными потребителями оставались военные, правительство. В 1969 году Intel выпустили микропроцессор 4004, подготовивший базис будущей революции. Одновременно США заложили будущую основу общемировой сети интернет, инициировав проект ARPANET.

Хронология развития кодово-импульсной модуляции

Важно! Зал славы национальных изобретателей США наградил Бернарда Оливера, Клода Шеннона за создание кодово-импульсной модуляции (патент США 2.801.281, 1957 год).

Первая система вещательных приёмопередатчиков (1961) несла 24 телефонных канала кодово-импульсной модуляции (КИМ), частотой выборки 8 кГц, кодированных 8-битными числами. Качество связи соответствовало используемому ранее частотному мультиплексированию. Указанное помогло оцифровать:

  1. Связь. Поколение 2G (1992) сотовых сетей стало цифровым.
  2. Телевещание (начало 90-х, XX века). Женевское соглашение, принятое 17 июня 2015 года, установила сроки устранения странами последних признаков аналогового вещания. Первыми (2006) ушли Нидерланды, Люксембург. Россия планирует окончить процесс в 2019.
  3. Радиовещание (конец 80-х, XX века). Норвежская корпорация NRK 1 июня 1995 года первой начала коммерческую трансляцию. К 2017 году 38 стран запустили сервис, включая Россию.

Изобретённая Алеком Ривсом (1937) импульсно-кодовая модуляция постепенно достигла областей звукозаписи, позже захватив коммерческое вещание. Пионерами стали продукты японских брендов (1971) NHK, Ниппон Колумбия. Параллельно опыты вели ВВС, создавшие цифровой двухканальный рекордер. Годом позже британцы провели пробную цифровую трансляцию. Развитие цифровой записи предшествовало появлению вещания.

  • Четвёртое поколение коммутаторов 4ESS внедрено в систему телефонных линий США (1976).
  • Линейная кодово-импульсная модуляция (1982) включена красной книгой стандартов записи компакт-дисков.
  • AES3, основа будущего S/DIF, вводится в обиход (1985).
  • Формат файлов.WAV становится стандартом персональных компьютеров (1991).
  • Мировая запись носителей переходит на цифру: DVD (1995), Blu-ray (2005).
  • Разработка цифровых протоколов передачи (2001) любительских раций (D-STAR, компании ICOM).
  • HDMI поддерживает кодово-импульсную модуляцию (2002).
  • Контейнер RF64 включает КИМ (2007).

Резюме развития технологии

Виды радиолюбительской связи на КВ принёс миллениум. Упоминая наработки Второй мировой войны, попутно обсуждали громадные размеры оборудования (машинные залы). Минимизация шла полным ходом, однако новинки оставались засекреченными. Исключая области записи, компьютерных сетей. Развал СССР явил миру чудеса цифровой техники: вещание, персональные вычислительные машины, связь. Поэтапно мир выбрасывает вон аналоговые технологии, модернизируя оборудование.

Структурная схема процесса позволяет игнорировать старение, погодные условия, помехи. Модем шутя выполняет работу машинного зала времён Второй мировой войны. Радиолюбителям стали выделять технику, о которой мечтали вьетнамские войска. Процесс вскоре позволит домоседам проектировать системы, насиживая уютное кресло. Возблагодарим интернет, подаривший людям возможности, доселе не известные планете.

Читайте также: